

С. Я. ДОКШТЕЙН, Е. А. МАКАРОВА,
С. С. РАДОМИНОВА

ПРАКТИЧЕСКИЙ
КУРС ПЕРЕВОДА
НАУЧНО-
ТЕХНИЧЕСКОЙ
ЛИТЕРАТУРЫ

(АНГЛИЙСКИЙ ЯЗЫК)

Издание 3-е,
исправленное и дополненное

Ордена Трудового Красного Знамени
ВОЕННОЕ ИЗДАТЕЛЬСТВО
МИНИСТЕРСТВА ОБОРОНЫ СССР
МОСКВА — 1973

Докштейн С. Я., Макарова Е. А., Радоминова С. С.
Д-63 Практический курс перевода научно-технической
литературы (английский язык). Изд. 3-е, исправл.
М., Военное издательство, 1973.

448 с.

Учебник имеет целью помочь учащимся, имеющим сравнительно небольшую подготовку по английскому языку, овладеть навыками перевода научно-технической литературы в предельно сжатые сроки. Тексты учебника взяты из оригинальной научно-технической литературы и по тематике относятся к различным отраслям науки и техники.

Учебник предназначается для слушателей высших военно-инженерных учебных заведений и студентов гражданских технических вузов, а также для инженеров, научных работников и других специалистов, желающих научиться читать и переводить научно-техническую литературу или подготовиться к сдаче кандидатского экзамена по английскому языку.

Д 0714-125
088(02)-73 150-73

4И(Англ.)

*Сарра Яковлевна Докштейн, Елена Александровна Макарова,
Серафима Сергеевна Радоминова*
ПРАКТИЧЕСКИЙ КУРС ПЕРЕВОДА НАУЧНО-ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ
(Английский язык)
Издание 3-е

Редактор Крупенникова И. А.
Редактор-лексикограф Черемухина Н. В.
Художник Карпиков И. И.
Художественный редактор Прозоровская Р. И.
Технический редактор Слепцова Е. Н.
Корректор Шабалина Э. С.

Сдано в набор 30.12.71 г. Подписано к печати 31.10.72 г.
Формат бумаги 60×90 $\frac{1}{16}$. Печ. л. 28. (Усл.-печ. л. 28). Уч.-изд. л. 32,113
Бумага типографская № 1. Тираж 40 000 экз. Изд. № 11/5526 Зак. 819. Цена 1 р. 36 к.

Ордена Трудового Красного Знамени
Военное издательство Министерства обороны СССР
103160, Москва, К-160
Набрано в 1-й типографии Воениздата
103006, Москва, К-6, проезд Скворцова-Степанова, дом 3
Отпечатано во 2-й типографии, г. Ленинград, Д-65, Дворцовая пл., д. 10

ОТ АВТОРОВ

Настоящий Практический курс перевода представляет собой учебник, предназначенный для обучения переводу научно-технической литературы с английского языка на русский.

Целью учебника является развитие навыков перевода на основе изучения лексики и грамматических конструкций, характерных для этого вида литературы.

Учебник предназначен для слушателей высших военно-инженерных учебных заведений Советской Армии и студентов гражданских высших учебных заведений. Кроме того, учебник может быть использован для занятий с адъюнктами и аспирантами, а также лицами, имеющими некоторую подготовку по языку и желающими самостоятельно, в сжатые сроки научиться читать и переводить литературу по своей специальности.

Учебник состоит из двенадцати уроков, упражнений на отработку отдельных переводческих задач, поурочных разработок слов, справочника и алфавитного англо-русского словаря.

Этому учебному материалу предшествует вводная статья, рассматривающая некоторые лексические и грамматические особенности стиля научно-технической литературы и вопросы методики обучения переводу.

Каждый урок учебника содержит:

1. Основной текст для перевода с английского языка на русский.
2. Упражнения на решение грамматических, лексических и словообразовательных задач, специальные упражнения на перевод терминов и упражнения в чтении.

3. Дополнительные тексты для перевода с английского языка на русский.

4. Контрольные вопросы по материалам урока.

Основные тексты уроков подобраны таким образом, чтобы каждый из них отражал определенные грамматические и лексические явления, прорабатываемые в уроке. Новая лексика, предназначенная для усвоения, выделена в тексте шрифтом и снабжена ссылочными номерами, указывающими, под каким номером данное слово прорабатывается в разделе «Поурочные разработки слов». Новые грамматические явления выделены в тексте разрядкой.

Тексты составлены на материале американской и английской научно-технической литературы. По содержанию они освещают некоторые вопросы из области кибернетики, счетно-решающих устройств, исследований космоса, радиоэлектроники, ракетной техники и авиации. Тексты подобраны таким образом, чтобы они представляли интерес для возможно более широкого круга специалистов.

Грамматические упражнения уроков преследуют цель создания грамматических навыков перевода. Они решают всю сумму вопросов, возникающих при переводе на русский язык отдельных грамматических явлений: 1. узнавание данного грамматического явления в тексте по формальным признакам (надример, по окончанию) или с учетом его синтаксических связей; 2. нахождение соответствий (грамматических или лексических) для изучаемого явления в русском языке.

К каждому уроку даются упражнения на те грамматические явления из предыдущих уроков, твердое усвоение которых требует многоократного повторения.

Лексические упражнения служат для закрепления слов, предназначенных для усвоения и выработки необходимых лексических навыков перевода¹. Они включают перевод слова в предложении с учетом значения другого слова, синтаксически с ним связанныго (например, перевод глагола в зависимости от лексического значения прямого дополнения), перевод многоозначных слов, служебных слов, слов одного словообразовательного ряда, значение которых по тем или иным причинам легко вывести из значения основного слова.

Лексические упражнения не содержат незнакомых слов и грамматики и, помимо своей основной цели — закрепления новых слов, служат для повторения материала предыдущих уроков.

В качестве материала для грамматических и лексических упражнений используются предложения и отрывки, взятые из оригинальной научно-технической литературы.

Словообразовательные упражнения имеют целью научить учащегося переводить слова, в состав которых входят префиксы и суффиксы, часто встречающиеся в научно-технической литературе.

Упражнения на перевод терминов служат для того, чтобы показать, как можно раскрыть значение сложного термина путем установления смысловых связей между его компонентами.

Упражнения в чтении должны помочь учащемуся приобрести навык чтения путем сознательного членения предложений на смысловые группы и соблюдения фразовых ударений. В каждом уроке имеются также упражнения на чтение слов, включающих трудные для чтения буквосочетания.

В конце каждого урока приведено несколько текстов для перевода без словаря и для перевода с общим англо-русским словарем. Эти тексты подобраны так, что они содержат только пройденные грамматические явления и некоторое количество незнакомых слов. В текстах для перевода без словаря количество незнакомых слов является минимальным и значения их даются непосредственно после текстов. Тексты для перевода со словарем содержат примерно 10% незнакомых слов. Они являются дополнительным материалом для обучения переводу с листа и для контроля усвоения пройденной лексики и грамматики.

Контрольные вопросы служат для проверки усвоения изучаемого материала.

После уроков даются дополнительные упражнения на решение отдельных переводческих задач. К ним относятся упражнения на перевод предложений, требующих изменения порядка слов в русском языке, упражнения на объяснительный перевод, упражнения на перевод образных выражений и др.

В поурочные разработки слов включена лексика, предназначенная для усвоения. В них даются различные значения и приводятся случаи употребления слова, свойственные научно-технической литературе, а также показываются словообразовательные возможности слов. Для более полного раскрытия значений слова даются дополнительные пояснения на русском языке. Значения слов, как правило, иллюстрируются примерами.

В справочнике рассматриваются грамматические явления, которые обычно представляют значительные трудности при переводе: инфинитив и инфинитивные конструкции, причастие и причастные конструкции, герундий, сослагательное наклонение, ниверсия, эллиптические конструкции, фразеология, средства связи самостоятельных предложений, модальные слова и некоторые другие темы.

В нем указываются также внешние признаки, позволяющие опознать конструкцию в предложении, раскрывается ее значение и даются наиболее распространенные способы перевода (готовые соответствия), которые учащиеся могут использовать при переводе научно-технической литературы.

¹ В заданиях к лексическим упражнениям после слова указывается номер урока и номер, под которым данное слово помещено в «Поурочных разработках слов», например: *absence* (3,5) означает: урок 3-й, номер слова в поурочной разработке 5-й.

Англо-русский словарь включает слова поурочных разработок и слова, которые должны быть известны учащимся до начала работы по этому учебнику¹.

* * *

Учебник рассчитан примерно на 70—80 часов аудиторных занятий.

Независимо от того, ведется ли работа под руководством преподавателя или учебник прорабатывается учащимися самостоятельно, изучение уроков рекомендуется начинать с проработки грамматического материала.

Учащийся самостоятельно прорабатывает указанный в рамке урока параграф справочника, частично выполняет грамматические упражнения (пять—шесть примеров из каждого упражнения) и с помощью контрольных вопросов проверяет, в какой степени им усвоен прорабатываемый материал.

Грамматические упражнения можно выполнять как письменно, так и устно. При выполнении упражнений письменно учащимся рекомендуется выписать в тетрадь ту часть английского предложения, в которой содержится прорабатываемая конструкция, а затем письменно перевести все предложение, подчеркивая ту его часть, которая соответствует выписанной английской конструкции. Например, прорабатывая грамматическую тему «инфinitив в составе сложного дополнения», учащийся, переводя предложение *He thought these data to differ greatly from the information received from his experiments* делает в тетради следующую запись:

...thought these data to differ...

Он думал, что эти данные очень отличаются от данных, полученных на основе его опытов².

Прорабатывая грамматический материал, всегда следует иметь в виду лексическую сторону грамматического явления. Например, выполняя упражнение на конструкцию «инфinitив как часть сказуемого» (*is expected to come*), рекомендуется повторить (по справочнику или по упражнениям), какие глаголы употребляются в качестве первого компонента этой конструкции (*to expect, to believe, to think, to assume, to find* и др.) и как они переводятся на русский язык.

В процессе дальнейшей работы рекомендуется выполнить все или по крайней мере большинство предложенных упражнений, с тем чтобы создать прочный навык перевода изучаемой грамматической конструкции.

К переводу основного текста следует приступить после первичного закрепления грамматического материала. Ввиду того что основной текст относительно велик по объему и содержит значительное количество лексических и грамматических трудностей, рекомендуется делить текст на две части и отводить время для работы над ним на двух занятиях. Переведенная на первом занятии часть текста задается на дом для повторения, а на втором занятии контролируется усвоение этой части и переводится вторая часть текста; на третьем занятии проводится контрольный перевод всего текста.

Следует всегда иметь в виду, что перевод текста должен занимать центральное место в аудиторной работе, так как перевод в присутствии преподавателя дает возможность формировать у учащегося правильные навыки перевода: умение воспринимать слово как определенную часть речи, умение узнавать грамматическую конструкцию и находить для нее соответствие в русском языке; умение правильно выбирать значение слова в зависимости от его связей с другими словами в предложении, а также в зависимости от более широкого

¹ Слова, уже известные учащимся, отмечены в словаре нулем (0). После слов, содержащихся в поурочных разработках, указывается номер урока и порядковый номер слова в разработке.

² При переводе некоторых предложений, приводимых в качестве примеров, авторы, стремясь подчеркнуть грамматическую сторону того или иного явления или различные случаи употребления отдельных слов, намеренно несколько отходили от литературных вариантов перевода этих предложений.

контекста; умение ориентироваться в предложении, например, временно обойти незнакомое слово, с тем чтобы вернуться к непонятному месту после перевода остальной части предложения. Таким образом, на связном тексте учащийся комплексно решает самые разнообразные задачи перевода, которые он по частям учится решать на грамматических, лексических и других видах упражнений.

Усвоение лексики происходит в процессе изучения поурочных разработок слов, в процессе перевода текстов и при выполнении лексических упражнений.

Изучать поурочную разработку слов можно до перевода основного текста или непосредственно после него. В обоих случаях учащийся выполняет эту работу самостоятельно. Изучая поурочную разработку слов, учащийся знакомится со всеми нужными ему значениями нового слова и стечениями употребления этого слова в научно-технической литературе.

Дальнейшее закрепление новой лексики и создание лексических навыков перевода осуществляются в процессе выполнения лексических упражнений. Одна часть лексических упражнений предназначена для закрепления трудных для усвоения слов (например, многозначных и многофункциональных), другая — для развития лексических навыков перевода. К последним относятся упражнения на выбор значений слов, на догадку, на перевод словосочетаний и т. п.

Лексические упражнения следуют, как правило, выполнять устно. На заключительном этапе работы рекомендуется проводить письменный контроль усвоения слов данного урока с включением в него некоторого количества старых слов.

Чтение отрабатывается на специальных упражнениях и в ходе проработки основного текста на каждом занятии. По завершении работы над текстом рекомендуется проводить контрольное чтение основного текста.

Дополнительные тексты можно использовать как при самостоятельной работе учащихся, так и при работе в аудитории.

На изучение каждого урока следует отводить шесть — восемь часов аудиторных занятий.

В данный учебник, с разрешения Ю. П. Фунт, включены обработанные ею три текста: «Computers», «Semiconductors», «Nuclear Power for Aircraft», за что авторы приносят ей благодарность.

Авторы выражают благодарность преподавателям кафедр иностранных языков Военно-воздушной инженерной орденов Ленина и Октябрьской Революции Краснознаменной академии имени профессора Н. Е. Жуковского и Военной инженерной Краснознаменной академии имени А. Ф. Можайского, принимавшим участие в обсуждении рукописи.

Все замечания по содержанию и оформлению настоящего учебника просим направлять по адресу: Москва, К-160, Военное издательство.

О НЕКОТОРЫХ ОСОБЕННОСТЯХ ЯЗЫКА НАУЧНО-ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ И МЕТОДИКИ ОБУЧЕНИЯ ПЕРЕВОДУ

Понятие «научно-техническая литература» объединяет, как известно, разную по своему характеру литературу: монографии, различные учебники, журнальные статьи, технические описания, справочники, наставления и инструкции, патенты и т. п. Эти виды научно-технической литературы отличаются друг от друга по языку. Например, язык монографий, научных трудов и журнальных статей, как правило, богаче и ярче, чем язык технических справочников и руководств, наставлений и инструкций. Тем не менее все виды научно-технической литературы имеют много общего в языке и в характере изложения. В научно-технических работах материал излагается кратко, точно и логично и вместе с тем достаточно полно и доказательно. И это находит свое отражение в составе используемой лексики и грамматическом построении предложений. С этой точки зрения у всех видов научно-технической литературы имеется много общего, что и дает возможность говорить об общих лексических и грамматических особенностях научно-технической литературы.

Лексические особенности научно-технической литературы

Лексика научно-технической литературы состоит из общеупотребительных слов и большого количества специальных терминов.

Одна часть общеупотребительных слов, таких как *to work* *работать*, *to know* *знать*, *place* *место*, *new* *новый* и др., обычно известна учащимся из школьного или другого начального курса английского языка и, как правило, не вызывает затруднений при переводе.

Другая часть общеупотребительных слов учащимся неизвестна и представляет собой тот основной лексический запас, который они должны усвоить в процессе обучения. По мнению специалистов, это примерно 2000—2500 слов. Усвоение такого количества слов в тех значениях, в которых они употребляются в научно-технической литературе, обеспечивает довольно быстрый темп перевода.

Эту часть общеупотребительных слов можно условно подразделить на несколько групп:

1. Слова, употребляемые в научно-технической литературе в значениях, отличных от тех, которые учащиеся усвоили в начальном курсе. Например, глагол **to offer** в научном тексте чаще употребляется в значении *оказывать (сопротивление)*, а не *предлагать*, глагол **to attack** — *приступить к решению (задачи)*, а не *нападать*, глагол **to happen** — *оказываться, а не происходить, случайно оказаться*. Для существительного **state** основным значением в научно-техническом тексте является *состояние, положение*, а не *государство*. Существительное **point** часто имеет значение *проблема, а не точка*.

Особого внимания заслуживают многозначные слова, которые учащиеся на основе своего прошлого языкового опыта переводят только одним значением. К ним относятся такие слова, как **time**, которое обычно знают только в значении *время*, **well** — *хорошо, then* — *затем* и многие другие. Трудность здесь заключается в том, что учащимся кажется, что они хорошо знают эти слова, поэтому при переводе они смело подставляют те значения, которые им известны, и получают предложения, лишенные смысла. Например, в предложении *The matter of interplanetary travel received a great deal of attention* учащиеся иногда переводят слово **matter** как *материя* и получают, конечно, бессмысленное предложение (*Материя межпланетного полета привлекла большое внимание*). В этом предложении слово **matter** имеет значение *проблема, вопрос, а не материя*. (*Проблема межпланетного полета привлекла большое внимание*).

К этой же группе следует отнести и некоторые служебные слова, такие как **for, as, since, after, before** и др. Особенностью этих слов является то, что они могут выполнять функции различных частей речи и, кроме того, некоторые из них имеют различные значения в пределах одной части речи. Например, слово **for** может быть предлогом и союзом. В качестве предлога **for**, помимо своего наиболее распространенного значения *для*, имеет значение *в течение*, а в качестве союза — значение *так как*. Как правило, учащиеся не знают всех необходимых значений этих служебных слов и не умеют определять их значения.

2. Слова, которые на начальном этапе обучения обычно не изучаются. Например: **to regard** *рассматривать, считать*, **to specify** *точно определять*, **to design** *конструировать*, **to assume** *предполагать, принимать (форму)*, **to average** *в среднем равняться*, **conclusion** *вывод, заключение*, **standpoint** *точка зрения*, **promising** *перспективный*, **available** *имеющийся, inherent* *присущий, свойственный* и др. Сюда же следует отнести большое количество служебных слов, не изучавшихся ранее, таких как **on account of** *из-за*, **as a consequence**, **due to** *благодаря*, **according to** *согласно*, **with reference to** *в отношении*, и таких как **provided**, **provided that**, **providing** *если только, при условии, что*, **following**

вслед за, *given* если дано и др., внешне схожих с другими частями речи. Поскольку эти слова вообще не известны учащимся, то запоминание их требует больших усилий памяти.

3. Слова и словосочетания, обеспечивающие логические связи между отдельными частями текста и, следовательно, обеспечивающие логичность изложения. К ним относятся: *to begin with* прежде всего, *furthermore* кроме того, более того, *alternatively* и наоборот, *summing up* говоря вкратце и др. Некоторые из них по форме совпадают с наречиями, но отличаются от них по значению. Например, *still* как наречие имеет значение *еще*, а как союз — *однако*, *again* — *снова* и *кроме того*, *also* — *также* и *кроме того*.

4. Слова и словосочетания, служащие для выражения отношения автора к излагаемым фактам или для уточнения этих фактов. Например: *needless to say* не вызывает сомнения, *unfortunately* к сожалению, *strictly speaking* строго говоря, *in a sense* в известном смысле, *at most* в лучшем случае и др.

Эти слова и словосочетания, если их значения твердо не заучены, могут вызвать известные затруднения при переводе.

5. Фразеологические (несвободные) словосочетания, количество которых довольно велико (свыше тысячи единиц, из них примерно двести являются наиболее распространенными).

Особенностью фразеологических словосочетаний, употребляемых в научно-технической литературе, является то, что они более или менее нейтральны по окраске. К наиболее типичным словосочетаниям такого рода относятся: *to be in a position* быть в состоянии (что-л. сделать), *to be under way* осуществляться, (проводиться) в данное время, *to bring into action* начинать действовать, *to take advantage* использовать, *with respect to* в отношении, *along with* наряду с (чем-л.), *on the part* со стороны кого-л.), *for the time being* в настояще время и др.

Следует помнить, что фразеологические словосочетания играют очень важную роль в предложении и поэтому их необходимо твердо знать.

Вторым слоем научно-технической литературы являются термины — слова и словосочетания, принятые для обозначения специальных понятий в той или иной области науки и техники. Например: *guidance* наведение, *combustion chamber* камера сгорания, *force of gravity* сила тяжести, *air-to-ground missile* ракета класса «воздух — земля» и др.

Для перевода терминов особое значение имеет понимание явлений и процессов, о которых идет речь в данном тексте, и знание соответствующей русской терминологии. Если специалист хорошо знает русскую терминологию, то, встретив в английском тексте незнакомый термин, он может в ряде случаев сам, не прибегая к словарю, догадаться, каким соответствующим русским термином его следует переводить.

Наибольшую трудность для понимания и перевода представляют термины, состоящие не из одного слова, а из группы слов. Такие термины обычно называют сложными, или много-компонентными. Раскрытие их значения требует определенной последовательности действий и знания способа перевода отдельных компонентов. Можно рекомендовать начинать перевод многокомпонентных терминов с последнего слова. Затем по порядку справа налево переводить стоящие перед ним слова, учитывая смысловые отношения между компонентами. Например, при переводе термина *liquid-propellant power plant* сначала следует перевести *power plant* — *силовая установка*, а затем слово *propellant* — *топливо* и наконец связанное с ним дефисом слово *liquid* — *жидкость, жидкай*. Зная соответствующую русскую терминологию, легко получить перевод всего термина — *силовая установка на жидком топливе*.

При переводе терминов следует также учитывать и то, что многие из них многозначны, т. е. имеют несколько значений не только в разных областях науки и техники, но даже в одной и той же области. Например, термин *stage* в радиотехнике имеет значения 1. *каскад*; 2. *фаза, стадия*, а в ракетной технике — *ступень (ракеты)*. Перевод таких терминов требует знания предмета, о котором идет речь, так как выбор нужного значения обусловливается контекстом.

Учитывать контекст приходится и в том случае, когда мы встречаемся с появлением у термина новых значений, с расширением или, наоборот, с сужением его значения. Так, например, широко распространенный английский термин *container* *контейнер* сейчас часто используется для обозначения более широкого понятия — *вместилище* — и может в зависимости от контекста переводиться как *резервуар, приемник, корпус, бак, сосуд* и т. д. Наоборот, термин *arrangement* *размещение* в авиации стал применяться в более узком значении — *схема (самолета)*.

В настоящее время в связи с бурным развитием науки и техники новые значения терминов возникают так быстро, что специальные и терминологические словари иногда не успевают их своевременно зарегистрировать. Если в словаре нет какого-либо нового термина, его следует перевести дословно, а затем подобрать соответствующий русский эквивалент. Если же в русском языке еще нет необходимого эквивалента, следует или дать описательный перевод, или воспользоваться транслитерацией, т. е. написать этот иностранный термин русскими буквами, или транскрипцией. Именно таким образом были созданы и вошли в русскую терминологию такие термины, как *миксер* (от английского *mixer*), *импеданс* (от английского *impedance*) и др.

В английском языке, так же как и в русском, сравнительно широко употребляются слова, образованные от латинских или

греческих слов. Иногда они оказываются «ложными друзьями» переводчика. Имея сходное звучание в русском и английском языке, эти термины иногда различаются по своим значениям. Так, например, английскому термину *specific thrust* в русском языке соответствует термин *удельная тяга*, а не *специфическая тяга*, как можно было бы подумать, исходя из перевода английского слова *specific* *специфический*.

Чтобы не делать подобных ошибок, рекомендуется, если точно неизвестно, какому русскому термину соответствует данный английский, обращаться к соответствующему словарю по специальности.

Таким образом, подводя итог, следует подчеркнуть, что усвоение строго отобранных и сравнительно ограниченног количества слов дает возможность специалисту читать научно-техническую литературу, почти не обращаясь к общему англо-русскому словарю и пользуясь только специальными словарями.

Грамматические особенности научно-технической литературы

Особенности изложения материала в научно-технической литературе сказываются и в грамматической структуре текстов. Тексты изобилуют сложными по структуре, развернутыми предложениями с сочинительными и подчинительными связями внутри них. Например:

The relative value of vertical sounding rockets and satellites has been very fairly assessed by Massey, who pointed out that many of the quantities to be measured in the upper atmosphere are highly variable in time and space, and for this reason it is advantageous to use a satellite if it will stay up long enough.

Относительную ценность зондирующих ракет с вертикальным запуском и спутников довольно правильно определяет Мэсси, который указывает, что многие величины, подлежащие измерению в верхних слоях атмосферы, подвержены значительным изменениям во времени и пространстве. По этой причине искусственный спутник может быть с успехом использован только в том случае, если он будет оставаться в космосе достаточно продолжительное время.

Перевод таких предложений требует умения разбираться в их грамматической структуре, требует твердого знания служебных слов — предлогов, с помощью которых осуществляются связи между словами, и союзов, с помощью которых осуществляются связи между отдельными частями сложного предложения или между предложениями.

В английских научно-технических текстах обращает на себя внимание употребление большого количества причастных, герундиональных и инфинитивных оборотов.

Individual fuel cells when combined in parallel or in series make fuel batteries.

Отдельные топливные элементы при параллельном или последовательном соединении образуют топливные батареи.

Эти конструкции вызывают при переводе особые трудности и являются источником многих грубых ошибок. Учащиеся иногда путают похожие по внешнему виду глагольные формы: причастие II в составе определительного оборота и глагол-сказуемое в прошедшем времени, герундий и причастие I.

Для научно-технического текста характерно также употребление групп существительного с несколькими левыми определениями (так называемых «цепочек» существительного), обеспечивающих краткость изложения.

The purpose of this article is to discuss some intercontinental ballistic missile reentry problems.

Цель данной статьи — обсудить некоторые проблемы входа в атмосферу межконтинентальной ракеты.

Перевод таких развернутых групп существительного требует знания правил последовательности перевода слов в «цепочки», а также умения установить смысловые связи между отдельными словами.

Одной из самых распространенных особенностей научно-технического текста является широкое употребление предложений с глаголом-сказуемым в страдательном залоге, т. е. употребление пассивных конструкций:

Thermoelectric generators with power ratings from a few watts to 5 kilowatts have been developed and generators with ratings of hundreds of thousands of kilowatts are being considered.

Были разработаны термоэлектрические генераторы с номинальной мощностью от нескольких ватт до 5 киловатт, и в настоящее время рассматривается вопрос о создании генераторов с номинальной мощностью в сотни тысяч киловатт.

Это объясняется тем, что научно-технический текст чаще всего представляет собой описания процессов или фактов и поэтому автор стремится сосредоточить внимание именно на самих процессах и фактах. Как правило, перевод таких предложений не вызывает затруднений, за исключением тех случаев, когда переходность английского и русского глаголов не совпадает.

Для английских научно-технических текстов характерно также выделение (логическое или эмоциональное) главного из

основной массы сообщаемых фактов. Это достигается употреблением особого порядка слов (инверсии) и использованием специальных выделительных конструкций.

Перевод текста

Обычно учащийся, если у него нет достаточной языковой подготовки, стремится переводить отдельные слова в том порядке, в котором они встречаются в тексте. Знакомые слова он переводит теми значениями, которые ему известны (чаще всего это только одно значение), а незнакомые находит в словаре, причем чаще всего берет первое (или одно из первых) словарное значение. При переводе как знакомых, так и незнакомых слов не всегда учитывается их принадлежность к определенной части речи и, как правило, совсем не учитывается связь переводимого слова с другими словами в предложении. Затем переведенные слова связываются «по смыслу» в зависимости от тех или иных ассоциаций, которые они вызывают у учащегося в соответствии с имеющимися у него сведениями по данному предмету.

В тех случаях, когда учащийся имеет дело с очень простым по структуре и лексике предложением, такой метод иногда может дать возможность правильно передать смысловое содержание предложения. Однако для научно-технической литературы типичны предложения, сложные по структуре и лексике и, как правило, большие по объему. Перевод таких предложений «по словам» почти всегда приводит к искажению смысла, сам процесс протекает крайне медленно, с постоянным обращением к словарю и при этом у учащегося нет уверенности в том, что перевод сделан правильно.

Перевод, который удовлетворял бы специалиста, должен правильно передавать смысл иностранного текста, соответствовать нормам русского языка и стилю научно-технической литературы. Чтобы добиться этого, учащийся должен овладеть определенными знаниями в области грамматики, приобрести соответствующий запас слов и усвоить определенные приемы работы с иностранным текстом.

Какие же навыки работы с иностранным текстом необходимо приобрести, чтобы с успехом переводить научно-техническую литературу? Условно эти навыки работы можно назвать грамматическими и лексическими навыками перевода.

Грамматические навыки перевода

При чтении и переводе иностранного текста необходимо помнить, что имущество грамматика является одним из основных средств, которое дает возможность правильно понять, а сле-

довательно, и перевести тот или иной текст. Необходимые грамматические навыки перевода вырабатываются при изучении грамматики под определенным практическим углом зрения, применительно к переводу научно-технического текста. Изучая отобранный по определенной системе грамматический материал, учащийся запоминает значения грамматических форм (или конструкций), характерных для научно-технической литературы, внешние формальные признаки, по которым их можно узнать в тексте, знакомится с их функциями в предложении. Одновременно он знакомится и с конкретными способами (образцами) их перевода, с приемами и последовательностью работы при переводе данных грамматических форм.

Переходя от изучения одной грамматической формы (или конструкции) к другой, усваивая частные правила, учащийся постепенно накапливает и расширяет свои знания и умения и приобретает необходимые практические навыки работы над текстом.

Рассмотрим два примера¹, показывающих, как, по мнению авторов, должен проходить процесс перевода незнакомого текста.

Пример 1. Как определить по внешним признакам принадлежность слова к той или иной части речи и его функцию в предложении? Возьмем английское предложение

The discovery of the third fundamental particle solved this problem.

Начинаем переводить предложение с первого слова.

На первом месте стоит артикль **the**. Предполагаем, что он относится к слову **discovery** (по предлогу **of**, стоящему за ним и показывающему границу первой группы существительного). Делаем вывод, что **discovery** является существительным и выполняет функцию подлежащего (по месту, занимаемому в предложении, и по отсутствию предлога перед ним). Переводим слово **discovery**, отвечающее на вопрос «что?», словом **открытие**.

Далее мы видим предлог **of**. Он показывает, что начинается следующая группа существительного, которая выполняет функцию определения к существительному **discovery**, т. е. отвечает при переводе на вопрос «чего?» или «какое?» (**открытие**).

Теперь определяем, к какому конкретному слову относятся предлог **of** и артикль **the**, стоящий за ним. Решаем, что **of** и **the** относятся к слову **particle** — последнему слову в группе существительного (по глагольной форме с окончанием **-ed** — **solved**, которая показывает границу данной группы существительного).

Переводим слово **particle**:

Открытие ... частицы ...

Возвращаемся к словам **third fundamental**, которые мы временно опустили. По месту, которое они занимают между артик-

¹ Лексические вопросы перевода в данных примерах не рассматриваются.

лем **the** и основным словом группы существительного **particle**, решаем, что это определения и, следовательно, при переводе должны отвечать на вопрос «какой частицы?».

Получаем:

Открытие третьей основной частицы ...

Переходим к слову **solved**. По окончанию **-ed** предполагаем, что это может быть глагол-сказуемое. Для проверки обращаемся к словам, стоящим справа. Видим прежде всего местоимение **this**. Делаем вывод, что слово **problem**, стоящее за ним, является существительным. Это подтверждает наше предположение о том, что **solved** — сказуемое (по наличию за ним существительного без предлога — прямого дополнения). Зная, что окончание **-ed** является показателем прошедшего времени и что при переводе слово **solved** должно ответить на вопрос «что сделало открытие?», переводим:

Открытие третьей основной частицы решило эту проблему.

Пример 2. Как определить синтаксические связи между словами, если с первого взгляда они неясны?

The method of propelling incendiaries is assumed to have been discovered by the Chinese.

The method of....

Способ (чего?)...

На этот вопрос может ответить слово **propelling** (если это герундий) или слово **incendiaries** (если **propelling** причастие). Отсутствие артикла (или другого определителя) между ними не позволяет установить значение этих слов по внешним признакам.

Пробуем перевести **propelling** как причастие:

The method of propelling incendiaries...

Способ движущихся зажигательных веществ... — такой перевод лишен смысла.

Тогда переводим **propelling** как герундий и получаем:

Способ движения зажигательных веществ...

Теперь основная задача решена. Смысл ясен. Осталось лишь внести исправления в перевод, чтобы приблизить его к нормам русского языка, и перевести вторую часть предложения:

Способ метания зажигательных веществ, как полагают, был открыт китайцами.

К такому методу работы учащийся должен прибегать только в тех случаях, когда одна и та же форма слова (например, слова с окончаниями **-ing** и **-ed**) имеет разные значения, а внешние признаки не позволяют сразу понять, какую функцию в предложении она выполняет. Следовательно, для того чтобы научиться хорошо и быстро переводить научно-техническую литературу, необходимо овладеть определенными грамматическими навыками перевода.

Лексические навыки перевода

Для того чтобы правильно понимать и переводить научно-технические тексты, необходимо предварительно усвоить значительное количество слов, которые наиболее часто употребляются в научно-технической литературе. Однако простого знания даже большого количества слов часто оказывается недостаточно. Многие слова имеют несколько различных значений, поэтому возникает вопрос, какое же значение выбрать в каждом конкретном случае. Некоторые как будто бы знакомые слова в тексте могут встретиться в незнакомых значениях, которых нет в словаре. Как их переводить? Кроме того, естественно, что почти в каждом тексте встречаются и совсем незнакомые слова. Нужно ли при этом всякий раз обращаться к словарю? Чем руководствоваться при выборе значения многозначного слова? Механическая подстановка значений слов (по памяти или по словарю) часто ведет к грубым искажениям смысла переведимого текста. Чтобы избежать подобных ошибок, необходимо овладеть определенными навыками работы со словарем и словарем. Условно назовем их лексическими навыками перевода. Эти навыки приобретаются и развиваются постепенно, в течение сравнительно длительного периода — в процессе изучения соответствующих разделов справочника и поурочных разработок слов и выполнения различных лексических упражнений, и, конечно, при переводе текстов.

Изучая поурочную разработку слов, учащийся получает всестороннюю характеристику слова, узнает те его значения, в которых оно встречается в научно-технической литературе, и получает указания (когда это возможно), в каких случаях данное слово употребляется в том или ином значении. Например, изучая глагол *to appear*, учащийся узнает из поурочной разработки, что данное слово имеет два значения: 1. *появляться* и 2. *казаться* — и получает указание, что во втором значении (*казаться*) глагол *to appear* употребляется только в конструкции «*инффинитив как часть сложного сказуемого*» (т. е. когда за ним следует инфинитив другого глагола), как, например, в предложении

This device appears to differ
from the old ones.

Этот прибор, кажется (повидимому), отличается от старых приборов.

Другой пример: глагол *to make up* имеет два значения: 1. *составлять* (если дальше стоит предлог *of* или предлога вообще нет) и 2. *компенсировать, восполнять* (если дальше стоит предлог *for* или *by*).

Выполнение лексических упражнений помогает учащемуся не только запоминать различные значения слов, но и приобрести навык выбора нужного значения слова.

Существенную роль в создании лексических навыков перевода играет изучение раздела справочника «Указания по выбору значения слов», а также выполнение специально разработанных для этой цели упражнений и перевод связных текстов.

Обычно учащемуся известно, что если слово имеет несколько значений, то выбор нужного значения будет во многом зависеть от значений других слов или, как часто говорят, от «общего смысла» предложения. При этом некоторые полагают, что это в равной степени относится ко всем словам, входящим в состав предложения. Но это не так.

Известно, что в предложении слова связаны между собой не одинаково: одни связаны более тесно, связи других слов — более слабые, а третьи совсем не связаны между собой непосредственно и осуществляют эту связь через какое-либо другое слово. Например, смысловая связь подлежащего и сказуемого или сказуемого и дополнения является очень тесной, связь сказуемого с обстоятельством — менее тесная, а связь подлежащего и дополнения осуществляется только через сказуемое.

Изучение связей между словами в предложении показывает, что для определения значения какого-либо слова не надо во всех случаях определять значения всех слов в предложении. Достаточно выяснить значения тех слов, которые с ним наиболее тесно связаны (т. е. входят в состав словосочетания). Поэтому для определения необходимого значения слова в большинстве случаев можно ограничиться рамками словосочетания. Только в некоторых случаях приходится прибегать к более широкому контексту, т. е. учитывать смысл всего предложения и, в очень редких случаях, общее содержание текста.

Изучая раздел справочника «Указания по выбору значения слов», учащийся знакомится с тем, какие смысловые связи являются наиболее существенными для разных частей речи, а следовательно, значение каких слов надо учитывать при переводе глагола, существительного, прилагательного и наречия.

Например, при выборе значения переходного глагола (т. е. глагола, имеющего прямое дополнение) следует учитывать в первую очередь значение прямого дополнения, например:

to launch a rocket	запускать ракету
to launch a ship	спускать на воду корабль

Понятно, что выбор значения глагола *to launch* целиком определяется значением существительного — прямого дополнения (*rocket* ракета или *ship* корабль).

Выполняя специально разработанные упражнения на выбор значения данной части речи (например глагола) в зависимости от ее синтаксических связей, учащийся закрепляет ранее усвоенный материал и одновременно приобретает навык видеть при

переводе не только то слово, которое он в данный момент переводит, но и те слова и конструкции, на которые он будет опираться при переводе данного слова.

Не менее важным навыком, который вырабатывается при выполнении этих специальных упражнений, является навык последовательности перевода слов, синтаксически связанных между собой. Ведь если выбор значения переходного глагола зависит от значения существительного — прямого дополнения, то очевидно, что для того, чтобы правильно перевести глагол, надо сначала перевести прямое дополнение, а потом уже как бы «примерить», какое из значений глагола следует выбрать в данном случае.

Рассмотрим пример, показывающий, какие лексические задачи приходится решать при переводе предложений, как следует при этом выбирать необходимые значения слова и в какой последовательности переводить слова, синтаксически связанные между собой.

Переводим предложение

It was very difficult in the early days of atom smashing to deliver a direct hit on the nucleus.

Перевод первой части предложения до предлога **in** никаких трудностей с точки зрения выбора значений слов не представляет:

It was very difficult...

Было очень трудно...

Теперь возьмем группу существительного:

После перевода слов

... in the ... days в ... дни ...

возвращаемся к времени опущенному слову **early**, отвечающему на вопрос «какие дни?».

Подбираем перевод слова **early**, учитывая значение слова **days**:

... in the early days в первые дни ...

(а не **в ранние дни**, как можно перевести это слово, если не учить значения слова **days**).

Получаем:

Было очень трудно в первые дни ...

Переходим к переводу следующей части предложения (правого определения к слову **days**):

... of atom smashing ...

... расщепления атома ...

Убеждаемся, что надо внести поправку в перевод существительного **days**, которое определяется группой **of atom smashing**.

По-видимому, лучше сказать:

... в первый период работ по расщеплению атома ...

Далее мы должны перевести глагол **to deliver**. Помня, что перевод глагола зависит от лексического значения слов, с ним связанных, мы, прежде чем перевести этот глагол, переведем группу

пу прямого дополнения a **direct hit**, которая стоит в предложении за глаголом **to deliver**:

... a **direct hit** ... **прямой удар** ...

Теперь возвращаемся к глаголу **to deliver** и пытаемся сочтать слова **прямой удар** с теми значениями, которые имеет глагол **to deliver**: 1. **освобождать, избавлять**; 2. **доставлять, разносить**; 3. **передавать**; 4. **сдавать**; 5. **наносить**. Убеждаемся, что подходит только вариант **наносить (удар)**.

Перевод последнего отрезка предложения ... **on the nucleus** не вызывает никаких трудностей — ... **по ядру**.

Получаем перевод всего предложения:

В первый период работ по расщеплению атома было очень трудно нанести прямой удар по ядру.

Вносим редакционную поправку в перевод: заменяем слова **нанести прямой удар** словами **получить прямое попадание**.

Окончательный вариант перевода:

В первый период работ по расщеплению атома очень трудно было получить прямое попадание в ядро.

О развитии языковой догадки

Навык определения смысла переводимого слова с учетом значений других слов, синтаксически с ним связанных, и навык перевода словосочетания в определенной последовательности способствуют развитию языковой догадки, дают возможность при переводе незнакомого слова не обращаться к словарю (особенно, если незнакомым словом является глагол или наречие). Выше было сказано, что значение переходного глагола во многих случаях определяется по лексическому значению прямого дополнения:

We draw certain conclusions Мы делаем определенные from the experiment. выводы из этого опыта.

Очевидно, что перевод слова **draw** не потребует обращения к словарю, если сначала будет переведено прямое дополнение **conclusions** **выводы**.

В данном случае догадка основывается на том, что слово **выводы** чаще всего сочетается с глаголом **делать**.

Рассмотрим еще один пример, когда такой метод работы дает возможность использовать и специальные знания учащегося в какой-либо отрасли науки и техники:

When a current flows through a wire, it sets up a magnetic field. Когда ток течет по проводу, он создает магнитное поле.

Перевод глагола **set up** словом **создавать** основан на специальных знаниях учащегося о том, какие отношения существуют между током, протекающим по проводнику, и магнитным полем.

Развитие языковой догадки очень важно, поэтому в учебнике для этой цели даются специальные упражнения.

Редактирование перевода

При письменном переводе научно-технического текста учащемуся, кроме грамматических и лексических задач, приходится также решать чисто стилистические задачи. В первую очередь это относится к порядку слов. В переведенном предложении слова должны быть расположены так, чтобы они правильно передавали смысл английского предложения, но при этом стиль всего предложения должен соответствовать нормам русского языка.

В данном курсе перевода имеется ряд специальных упражнений на случаи изменения порядка слов.

Сравнение порядка слов в английских и русских предложениях показывает, что расхождения в расположении слов при переводе сводятся, главным образом, к расположению подлежащего и сказуемого. Существуют случаи, когда при переводе необходимо изменить порядок слов: поставить сказуемое перед подлежащим. Это, например, необходимо сделать при переводе следующего английского предложения:

The nature of the shape of the luminescence pulse produced by a short duration screen excitation is explained. Дается объяснение природы люминесцентного импульса, созданного кратковременным возбуждением экрана.

Иногда возникает необходимость внести и некоторые другие редакционные поправки в перевод:

— заменить одно слово другим, соответствующим стилю литературы по данному предмету; например, вместо *нанести прямой удар по ядру (атома)* сказать *получить прямое попадание в ядро*;

— добавить слово, отсутствующее в английском тексте; например:

... to force the current through the wire заставить ток течь по проводнику ...

— опустить слово, если оно ничего не прибавляет к смыслу предложения, а только усложняет его; например:

The waves travel away from the splash in ever widening circles. Волны распространяются (прочь) от места падения расходящимися кругами.

Однако все эти исправления следует вносить очень осторожно, так как замена одного слова другим или перегруппировка членов предложения без достаточных к тому оснований может привести к искажению смысла переведимого предложения.

О пользовании англо-русскими словарями

При переводе научно-технической литературы словари являются необходимым справочным материалом. Как бы ни был велик запас слов у читающего, в тексте всегда может встретиться незнакомое слово или знакомое слово в каком-то новом, неизвестном значении. Поэтому учащийся должен уметь пользоваться словарями.

Прежде всего необходимо знать, каким словарем пользоваться в каждом конкретном случае; кроме того, важно знать систему построения словаря, чтобы быстро найти нужное слово и правильно выбрать нужное значение.

Для перевода научно-технической литературы с английского языка на русский рекомендуется пользоваться общими и специальными англо-русскими словарями.

В общих словарях слова и словосочетания обычно расположены строго по алфавиту (не только первой буквы, но и всех последующих). По этой системе построен, например, Большой англо-русский словарь¹, Англо-русский военный словарь под редакцией Г. А. Судзиловского² и многие другие как общие, так и специальные словари.

Другой, довольно распространенной системой построения словарей, особенно словарей специальных, является алфавитно-гнездовая. При этой системе слова также располагаются по алфавиту, но словосочетания (например, многокомпонентные термины) собраны по определенному признаку в одном месте, в «гнезде». Чаще всего гнездо строится по основному слову, в большинстве случаев по определяемому существительному. В таком словаре, например, термин *guided missile* нужно искать на слово *missile*, где будут даны по алфавиту все термины, входящие в гнездо *missile*.

При такой системе словаря иногда трудно бывает, особенно вначале, найти нужное словосочетание (многокомпонентный термин), но эта система имеет и свои преимущества. Расположение всех сложных терминов в одном гнезде дает возможность сопоставлять их и даже при отсутствии нужного термина в словаре переводить его по аналогии с другими терминами данного гнезда.

При переводе научно-технической литературы с английского языка, особенно на первом этапе обучения, когда запас слов у учащегося невелик, ему приходится довольно часто обращаться к общему англо-русскому словарю. Для этой цели можно реко-

¹ Большой англо-русский словарь. Колл. авторов, под общ. руководством И. Р. Гальперина. М., «Советская энциклопедия», 1972.

² Англо-русский военный словарь. Сост. Г. А. Судзиловский и др. Изд. 2-е. М., Воениздат, 1968.

Мендовать широко известный Большой англо-русский словарь, являющийся в настоящее время наиболее полным и научно разработанным словарем. Всякого рода краткие словари (5000, 10 000 и даже 20 000 слов) не могут служить справочным материалом при переводе сложного оригинального текста, так как в них не всегда можно найти нужное слово или какое-то его более редкое значение.

В дальнейшем, когда учащийся усвоит необходимый минимум слов, ему придется в основном работать со специальными словарями.

Среди специальных переводных словарей имеются политехнические, в которых собраны термины всех областей науки и техники, и отраслевые, в которые включены термины данной отрасли науки или техники.

Наиболее полными англо-русскими политехническими словарями являются Англо-русский политехнический словарь¹ и Англо-русский военно-технический словарь². Эти словари, безусловно, окажут большую помощь при переводе научно-технической литературы.

Для того чтобы найти какие-то узкоспециальные термины, следует обращаться к специальному словарю по данной отрасли науки или техники.

В научно-технической литературе встречается много различных сокращений и условных обозначений, которые трудно расшифровать и перевести без словаря. В общих, политехнических и отраслевых словарях, как правило, приводятся списки наиболее часто употребляемых сокращений. Однако их бывает недостаточно. Тогда следует обращаться к специальным словарям сокращений, таким, как Словарь английских и американских сокращений³ и Словарь иностранных военных сокращений⁴.

Заключение

Из года в год расширяются и крепнут международные связи Советского Союза, растет обмен печатными изданиями и технической информацией с зарубежными странами.

Для многих специалистов становится необходимым использование в практической работе литературы на иностранном языке

¹ Англо-русский политехнический словарь. Под ред. А. Е. Чернухина. Изд. 2-е. М., «Советская энциклопедия», 1971.

² Англо-русский военно-технический словарь. М., Воениздат, 1965.

³ Словарь английских и американских сокращений. Сост. В. О. Блувштейн. и др. М., Государственное изд-во иностранных и национальных словарей, 1958.

⁴ Словарь иностранных военных сокращений. Под ред. М. П. Егорова. М., Воениздат, 1961.

по своей специальности. Именно для них в первую очередь и предназначается «Практический курс перевода научно-технической литературы».

Изложенные в настоящей вводной статье сведения о теоретических и практических основах перевода не являются исчерпывающими и имеют целью лишь бегло ознакомить начинающего переводчика с некоторыми особенностями перевода научно-технической литературы с английского языка на русский.

УРОК ПЕРВЫЙ

Текст: The Modern Theory of Light.

Грамматические основы перевода

Перевод инфинитивных конструкций: инфинитив как часть сказуемого (§ 8—14), инфинитив как часть сложного дополнения (§ 15, 16), инфинитивная конструкция с *for* (§ 18). Инфинитив в функции подлежащего (§ 2), определения (§ 6), обстоятельства цели (§ 3), обстоятельства последующего действия (§ 5), обстоятельства следствия (§ 4).

Местонимение *it* в функции формального дополнения (упр. 11).

Перевод союзных слов *that*, *what*, *how*, *where* (упр. 12).

Перевод предложений с союзом *whether* (упр. 13).

Различные значения служебных слов *for* (упр. 14) и *both* (упр. 15).

Лексические основы перевода

Зависимость перевода глагола от слов, с ним связанных (§ 113).

Перевод слов: *gain*, *fail*, *suggest*, *assume*, *exceed*, *adequate*, *conventional*, *common*, *ordinary*, *hardly*, *nearly*, *readily*, *necessarily*, *evidence*, *kind*, *sort*.

Перевод словосочетаний: *In terms of*, *give rise*, *at least*.

Перевод прилагательных с суффиксом *-able* (упр. 26).

Перевод слов с префиксами *dis-*, *in-* (*im-*, *ir-*, *il-*), *un-* (упр. 27).

Перевод терминов типа «существительное + существительное», «прилагательное + существительное» (упр. 28).

ТЕКСТ

THE MODERN THEORY OF LIGHT

In the history of the theory of light we see that two very different models have vied* from the outset¹ as to which is the true model to be used. On the one hand², light was pictured as a wave motion of some sort³, and on the other as a flight^{**} of fast-moving particles.

During the 19th century the former model gained⁴ universal⁵ acceptance⁶ thanks to a remarkable⁷ series of developments on both the experimental and theoretical basis.

* *vie* — конкурировать, соперничать

** *flight* — поток

The wave theory of light seemed to have defeated the particle theory when it explained the approximately rectilinear propagation. The theory was found by the physicists to be adequate enough to explain all the experimental results of the nineteenth century in terms of⁸ the wave theory.

However, early in the twentieth century a series of observations on photo-electricity gave rise⁹ to a really serious difficulty for the wave theory. It was found that light could cause atoms to emit electrons and that, when light released an electron from an atom, the energy possessed by the electron very greatly exceeded¹⁰ that which the atom could, according to electromagnetic-wave theory, have received. It was at this point that the wave theory failed¹¹ to suggest¹² an explanation. It was this fact and others associated¹³ with it that showed the wave hypothesis to be incomplete.

A return¹⁴, at least¹⁵ to some extent, to the particle theory of light appeared to be necessary. In 1905 Einstein suggested that in order to adequately¹⁶ describe these observations, it was necessary to assume¹⁷ that the energy of a light beam¹⁸ is not evenly spread over the whole beam, but is concentrated in the form of small particles proportional to the frequency of light. These localized concentrations of energy he called "photons" or "light quanta".

For the observation to be described in detail it is necessary to assume that the photons corresponding¹⁹ to light of the wavelength all have the same energy, those of blue light having nearly²⁰ twice²¹ the energy of the red. Photons are propagated like particles. It is assumed that there are usually a very large number of them, the energy in any one photon being very small. Thus in most ordinary²² experiments, the energy of a light beam is evenly distributed²³, just as²⁴ a gas exerts a very nearly uniform²⁵ pressure on the surface of an ordinary vessel, because each molecule is very small and the number of molecules is very large. When the movements of an ultra-microscopic particle are observed the irregularities²⁶ of the Brownian movements show the discontinuous²⁷ "structure" of the gas. In a similar way²⁸, the atom presents to the light beam an area so small that it indicates the presence²⁹ of "molecules of light" or photons.

Thus, on the one hand, stand all the phenomena of interference, diffraction and polarization which are so well described by the wave theory. On the other hand, modern experiment has greatly increased the number and range of the experiments which are readily³⁰ described in terms of photons. The electromagnetic picture has no place for the photons, and the particle theory has no place for the wave. Yet, both are required to give a complete description of the phenomena.

According to the present concept light has a dual³¹ character such that it may be represented equally well by waves or by

particles. The wave and particle properties of light are found by modern scientists to be two different aspects of the same thing. These two aspects are to be regarded as complementary³² rather than antagonistic, each being correct when dealing with the phenomena in its own domain³³: In macroscopic effects light can be treated as a continuous wave and in microscopic ones the photon aspect begins to become important.

Though there seems to be no doubt³⁴ as to the essential correctness of this theory we still find it difficult to understand how these two theories can both be true. Yet, we are forced to do so by the mass of good evidence³⁵ which can be brought forward in support of each of them. The acceptance of this concept required a fundamental³⁶ change in our ideas.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, содержащие конструкцию «инфinitив как часть сказуемого» (§ 8). Укажите возможные способы перевода конструкции.
Назовите глаголы — первые компоненты сказуемого, которые помогают опознать данную конструкцию.

Образец:

A body is said to be in motion...

Тело, как говорят, находится в движении...

Говорят, что тело находится в движении...

1. Light is thought to be...
2. The speed of these particles is found to be...
3. The rocket is known to be used...
4. These forces are believed to act...
5. The changes in the orbit are considered to be...
6. These charged particles are supposed to possess...
7. The planet is expected to have...
8. The direction of the current is assumed to be...
9. The diameter of this star is reported to be...
10. This cyclotron appears to develop...
11. The solid fuel rocket seems to be...
12. The speed of particles happens to change...
13. These conditions are likely to be found...
14. Uranium is unlikely to exist...

2. Переведите предложения, содержащие конструкцию «инфinitив как часть сказуемого». Обратите внимание на форму инфинитива (§ 11).

Образец:

The results are known to be used...

Результаты, как известно, используются...

The results are known to have been used...

Результаты, как известно, были использованы...

1. The rocket is found to develop speed...
2. The rocket is found to have developed speed...
3. The rocket was found to develop speed...
4. The rocket has been found to develop speed...
5. The properties of the elements are known to vary...
6. The properties of the elements are known to have varied...
7. This limitation appears to have been overcome...
8. This limitation appeared to be overcome...

3. Переведите предложения, содержащие в составе сказуемого инфинитив. Укажите, к какому компоненту сказуемого следует отнести при переводе отрижение (предложение 22). Укажите, где будет стоять модальный глагол в предложениях 23—26. Обратите также внимание на перевод группы существительного с предлогом, стоящей между первым компонентом сказуемого и инфинитивом (предложение 18 и 19).

1. The Sun is known to have a 11-year cycle of activity.
2. The proton is found to be 1840 times heavier than the electron.
3. The speed of light in vacua is one of the fundamental physical constants and has been found to be very close to 3.00×10^{10} centimetres per second.
4. Sputnik II is reported to have weighed about 1120 pounds.
5. The Sun of a certain galaxy is said to have a diameter more than 16 times the distance from the Sun to the Earth.
6. The first Earth's satellites were expected to stay on their orbits for a month or two.
7. Heat was thought to be a material substance.
8. The atmosphere of Saturn is believed to be about 16,000 miles deep.
9. Billions of stars are assumed to exist in the universe.
10. Some of the meteors are supposed to have formed when comets that passed near the Earth broke up.
11. The surface temperature of Mars seems to range from 30° C down to —60° C.
12. The circle where earth and the sky seem to meet is the horizon.
13. Our galaxy proved to be a spiral system.
14. When a planet has been proved to have an atmosphere, we naturally wish to find out as much as possible about the composition of the atmosphere.
15. Stars appear to be made of the elements that have been found in our Sun.
16. In contrast to the Moon and the Earth, Mars appears to have a relatively smooth surface.
17. The neutron was shown to be a magnet by simple experiments.

18. In physics the words nucleus and nuclei refer to the positively charged bodies which were shown by Rutherford to exist at the centre of the atoms of all substances.

19. The ratio¹ of charge to mass, e/m, for alpha particles was found by magnetic deflection measurements to be about half that for a proton.

20. The electric rocket is likely to remain a low-thrust device.

21. The rocket is unlikely to generate a velocity much greater than twice its exhaust velocity².

22. This method does not appear to offer any advantages for it depends on the production of materials with higher strength to weight ratios.

23. Although the neutron may seem to be a simple particle, having no electric charge but a small magnetic field, in modern theories the neutron is thought of as a complicated structure indeed.

24. In the millimetre wave region, the maser may eventually³ prove to be the best coherent detector.

25. Satellites in general move in elliptical orbits and they may be considered to have accelerations directed both towards the centre of the earth and in a perpendicular direction.

26. The rocket may be said to work on the reaction principle.

27. It does not seem to be possible at present to discuss a close correlation between the sunspot number and magnetic activity.

4. Определите функцию инфинитива, стоящего в начале предложения, и переведите предложения (§ 2, 3).

Помните, что существительное без предлога, следующее за инфинитивом, является дополнением к инфинитиву и его не следует принимать за подлежащее.

Образец:

To learn the principles of lift the scientists had to... (инфинитив — обстоятельство цели)

Для того чтобы изучить принципы действия подъемной силы, ученые должны были...

To learn the principles of lift was... (инфинитив — подлежащее)

Изучить принципы действия подъемной силы было...

1. To move from one astronomical body to another means to overcome gravitational forces.

2. To accelerate the gas a high pressure is needed in the rocket chamber⁴.

3. To land a high speed aircraft is a delicate operation even when visibility is good.

¹ ratio — соотношение

² exhaust velocity — скорость истечения (газов из сопла)

³ eventually — в конечном счете

⁴ chamber — камера

4. To produce a large thrust in a rocket requires high mass flow, high energy and high pressure.
5. To do work an object must have energy.
6. To coordinate the efforts of many groups of engineers constitutes a very difficult task.

5. Переведите группы слов (А.) и предложения (В.), обращая внимание на пассивный инфинитив в функции определения (§ 6).

Образец:

The experimental data to be discussed...

Экспериментальные данные, которые будут обсуждаться (которые должны быть обсуждены)...

A. 1. The elements to be studied...
2. The systems to be tested...
3. The energy to be generated...
4. The instruments to be used....
5. The data to be obtained...

B. 1. Propellant¹ properties and pressure are the main two factors to be considered here.
2. Mars will probably be one of the first worlds to be reached by men.
3. There are many things to be taken into consideration when designing a spaceship.
4. A most difficult problem to be overcome in the application of nuclear power to aircraft propulsion is the weight of the ship.
5. Now we shall discuss the system of units to be employed later in our discussion.
6. The chromosphere of the Sun may now be observed at all times by means of a spectrohelioscope and a spectrohelio-graph to be described later.

6. Переведите предложения, содержащие сложное дополнение. Назовите глаголы, после которых может следовать сложное дополнение (§ 15).
Заметьте, что глаголы *cause* и *make* переводятся по-разному в зависимости от наличия или отсутствия после них сложного дополнения.

Образец:

We consider the maximum field value to be...

Мы считаем, что максимальная величина поля составляет...

This force makes electrons move...

Эта сила заставляет электроны двигаться...

1. The ancients thought electricity to be invisible fluid.
2. We consider nuclear energy to be the prime source of heat energy.
3. The early discoveries in nuclear science showed the atomic nucleus to be a vast source of energy.

¹ propellant — топливо

4. Maxwell found the speed of propagation of electromagnetic waves to be equal to the ratio of electromagnetic to the electrostatic units of charge.

5. At some distance above the Earth, ultra-violet radiation from the Sun causes some of the molecules to dissociate from the molecular state to the atomic state.

6. What makes a satellite go around the Earth and stay in its orbit?

7. The tendency of a body to continue to move in a straight line is very evident when for some reason it is necessary to make the body move in a circle.

8. The air flowing over and under a wing causes the pressure to be less than atmospheric on the upper side of the wing.

9. The more stages, the more difficult it is to make an amplifier run in a stable fashion.

7. Переведите группы слов (А.) и предложения (В.), обращая внимание на перевод конструкции «*for + существительное + инфинитив*» (§ 18). Укажите, какой союз может предшествовать этому обороту.

Образец:

For the Moon to circle the Earth...

Для того чтобы Луна обернулась вокруг Земли...

For the information to be received...

Для того чтобы получить эту информацию... (Для получения этой информации... или Чтобы можно было получить эту информацию...)

A. 1. For an aircraft to be built, it is necessary...

2. For the fission process to be investigated, the scientists...

3. For thermonuclear reaction to take place, the temperature...

4. For the effect of cosmic rays to be studied in detail, satellites....

B. 1. 8 minutes are required for light to travel from the Sun to the Earth.

2. Nearly a month is required for the Moon to circle the Earth.

3. The satellite of Neptune is too far away for its size to be known with any accuracy.

4. For combustion to be rapid, the fuel and oxidant must be quickly mixed.

5. For ions to be formed, a considerable amount of energy must be given to the parent atoms.

6. In order for the airplane to climb, thrust must exceed drag.

7. In order for the radar system to operate properly, the radar receiver must be tuned to the magnetron frequency.

8. To start a chain reaction it is necessary for at least one neutron to hit¹ a Uranium-235 nucleus.

¹ hit — попадать, ударяться

9. Certain conditions are necessary for the existence of life to be possible on planets.
10. To observe the artificial¹ satellite optically it is necessary for him to be illuminated by the Sun.
11. In order for a proton or neutron to leave the nucleus much energy is required.
12. Four years are required for light to travel from the nearest star to the Earth.

8. Переведите предложения, содержащие инфинитив в функции обстоятельства последующего действия (§ 5).

Помните, что инфинитив в данной функции не имеет признаков, внешне отличающих его от инфинитива в функции обстоятельства цели. Инфинитив в этой функции переводится деепричастием или личной формой глагола и присоединяется к первому союзом «и».

Образец:

Elements combine chemically **to form** compounds.

Элементы химически соединяются *и образуют* (образуя) соединения.

1. Modern theory considers that at extremely high temperatures all molecules break up to form atoms or ions which are electrically charged atoms or portions of molecules.
2. Rutherford proved that alpha particles are the nuclei of helium atoms and that after the alpha particles are slowed down, they capture two electrons to become normal helium atoms.
3. According to some scientific theory the surface rocks² of Mars have combined with oxygen in the atmosphere to form a layer of iron oxide.
4. Element 94 was given the name of Plutonium to follow Uranium in the same order as the corresponding planets.
5. If the velocity of a satellite exceeds escape velocity³ then the satellite will leave the Earth never to return.
6. The world production of U_3O_8 is very high to rise perhaps to still greater amount in the next few years.

9. Переведите предложения, содержащие инфинитив в функции обстоятельства следствия (§ 4).

1. Molecules are too small to be seen with the most powerful microscope.
2. Only the most swiftly moving molecules possessed sufficient energy to escape from the atmosphere.
3. In a large galaxy the concentration of stars is often too dense for them to be examined individually.

¹ artificial — искусственный

² rocks — скальные породы

³ escape velocity — скорость отрыва

4. It is too early to properly weigh the significance of this method.

5. It has long been established that portions of the Earth's upper atmosphere are ionized enough to cause refraction and reflection of radio waves.

6. The negative poles in this case are far enough away so as not to influence the positive poles.

7. A winged spacecraft has rather large areas to be heat-protected.

8. These regions were too far away to be affected by the explosion.

9. Mere¹ observations of the stars cannot tell us which are young and which are old, for all their changes are far too slow to detect.

10. Переведите предложения, определив инфинитивные конструкции и функции инфинитивов.

1. Advancement in electronic techniques appears to be endless.

2. All forms of radiant energy have been found to travel through space with the same speed.

3. Temperatures on the surface of Mars, which seems to be the most comfortable place for life to exist beyond our Earth within the solar system, are also of some interest.

4. Most physicists believed in the latter half of the nineteenth century cathode rays to be charged particles.

5. Satellites in Earth orbits of about 600 miles or greater can normally be expected to remain in orbit for thousands of years.

6. The first satellite to be designed and developed in England was Ariel 3 which was successfully put into orbit on May 5, 1967.

7. To say that an object is travelling at a speed of 20 ft/sec (feet per second) does not describe the motion completely.

8. A day on Jupiter has been observed to be 9 Earth hours and 55 minutes long, the shortest of any of the planets.

9. When sound waves are directed on the diaphragm they cause it to move backwards and forwards.

10. The choice of radioisotope to be used as the source is determined by the thickness of the product to be measured.

11. The penetrating power of this new radiation was an obvious point to investigate.

12. A current which always flows in one direction along a wire is said to be a direct current.

13. Fourier's theory states that any waveform that repeats at regular time intervals can be shown mathematically to be equivalent to the sum of a series of sine waves of different amplitudes and frequencies.

¹ mere — простой

14. The first attempt to measure the speed of propagation of light was undertaken by Galileo in a very primitive way.

15. As we have seen earlier in this chapter, to cause thermonuclear reactions extremely high temperatures are required.

16. From classical electrodynamics we know that when a charge is accelerated it radiates. (This is the process that causes radio and television antennae to radiate).

17. In the so-called "gas counters" the radiation to be detected causes ionization in the gas, and the free charge is then collected and measured.

18. A satellite launched into an orbit which approaches the Earth's surface closer than 200 km will not circulate for long. The air drag is sufficient to cause the orbit to spiral in quite quickly to the dense lower atmosphere.

19. These rays were shown by J. J. Thomson and others to consist of a mixture of molecules and atoms of the residual¹ gas.

20. For a sound to be heard by the human ear it should be between the frequencies of approximately 20 cycles and 15,000 cycles.

21. Newton stated that the force which makes objects fall towards the Earth is only a special case of a general attraction between any two masses.

22. The birthplace of man is believed to be somewhere in the eastern hemisphere, but in just what region or even on what continent it is still impossible to say.

23. Interference by cosmic ray particles makes it necessary for neutrino detection to be carried out deep underground where other particles cannot penetrate.

24. In the course of his theoretical investigations Maxwell discovered the pressure of light. He derived this effect from the electromagnetic theory, but as a matter of fact it can be shown to follow from any wave theory.

25. Even though the demand for coal and lignite² continues to rise there does not appear to be any danger of running out of these fuels for several hundred years at least.

26. The first rocket to be used as a vehicle for scientific research was the rocket-powered gyro-controlled missile.

27. This property of matter to resist any change in its motion is called inertia.

28. Calculations concerning the interior properties of the Sun show it to contain mostly hydrogen and helium.

29. The unstable isotopes that are almost stable have been found to occur naturally and these were known as early as the turn of the century.

¹ residual — остаточный

² lignite — бурый уголь

30. For the purpose of this book we shall assume nuclei to be made up of two types of constituents, neutrons and protons.

31. There are certain principles to be followed in the design of propellers.

32. The important thing to notice is that the resolving power¹ depends on the diameter of the object glass.

33. In the electromagnetic theory of radiation the atom is supposed to be similar to the antenna of a radio transmitter, although much smaller and radiating a much higher frequency.

34. To determine the magnitude of anything, it is necessary to make a measurement.

35. For the sound to arise it is necessary to have a sound source and a medium to travel through.

36. If plane waves fall perpendicularly on a surface they may be shown to exert a pressure on it of a magnitude equal to the density of energy in the waves. This result is exceedingly difficult to observe, as the pressure is very small in practical cases.

37. In 1850 the French physicist Jean Foucault measured the speed of light in water. He found it to be substantially less than the velocity in air.

38. The basic requirements for any orbital research laboratory are heavily dependent upon the experiments to be performed.

39. There appear to be small but real fluctuations of a few per cent in the solar constant.

40. The penetrating power of this new radiation was an obvious point to investigate.

41. At first, man believed the Earth to be flat.

42. Considerable progress has been made with the difficult task of processing the information quickly enough for it to be of use for weather forecasting.

43. On the basis of new theoretical investigations it was demonstrated that it is hardly possible for the primary cosmic radiation to be of "near-solar" or metagalactic origin.

44. The hydrogen atom was the object of the first theoretical attack, because as the lightest of all atoms it was assumed to have the simplest structure.

45. In order for life to arise on a planet, the mass of the planet must lie between certain limits.

46. There does not appear to be a promising² approach to the solution of the problem.

47. As mentioned earlier, there seems to be no doubt that the X-ray emission changes very much over the solar cycle.

48. Using data of this kind it was found that the theory does not seem to give results which are in good agreement³ with observation.

¹ resolving power — разрешающая способность

² promising — перспективный

³ be in agreement — соответствовать

49. The discovery of radium was the first to start the new era of radioactive elements.

50. Both instruments and human explorers are sure¹ to find many surprises in the solar system.

11. Переведите предложения, содержащие местоимение **it** в функции формального дополнения.

Заметьте, что **it** в данной конструкции на русский язык не переводится.

Образец:

The hydraulic press makes it possible to exert an enormous force...

Гидравлический пресс *дает возможность* («делает возможным») *создавать* огромную силу...

1. A television telephone will make it possible to see a person at the other end of the line.

2. As the angle of attack is increased the flow of air finds it increasingly difficult to maintain contact with the surface of the wing and it separates from the surface before reaching the trailing edge.

3. The development of cells which can convert solar energy into electrical power with an efficiency of 10 per cent may make it possible to design instrumented satellites with unlimited operating lives.

4. The similarity from the chemical point of view of Uranium-235 and -238 makes it difficult to separate them by means normally used in chemical laboratories.

5. Experiments on interference and diffraction of light make it necessary to assume that the different colours in the spectrum must be represented by waves which have different values of wavelengths.

12. Переведите предложения, содержащие союзные слова **that, what, how, where**.

Заметьте, что при переводе таких предложений перед союзным словом в некоторых случаях следует добавить местоимение «то» в соответствующем падеже: «то, что»; «того, как» и т. д. Если союзному слову предшествует предлог (например, *in that* или *as to how*), то падеж местоимения «то» определяется предлогом («в том, что», «в отношении того, как»).

1. The internal combustion engine differs from the steam engine in that the fuel is burned directly in the cylinder.

2. Bernoulli's theory, 1938, furnished an explanation of what was then known of the behaviour of gases.

3. The type of material selected for wire insulation depends upon where the wire is going to be used.

4. We now turn to a description of some examples of how radioisotopes have come into active use.

5. There exist many theories as to how gravitational force may be overcome.

¹ be sure to — обязательно

13. Переведите предложения, содержащие союз *whether*. Обратите внимание на то, что перевод предложения следует начинать со сказуемого (или первого его компонента), а затем поставить частицу «ли».

Образец:

Whether the spaceship will be able to leave the Earth depends upon the speed of the ship.

Сможет ли космический корабль оторваться от Земли, зависит от скорости корабля.

1. It must be first of all determined whether the propellant is corrosive, stable, economical or costly.

2. Since the discovery of the solar cycle, attempts have been made to see whether the intensity of the Sun's visible light varies throughout the cycle.

3. Whether it will be economical to use missiles for transportation of cargo and people depends upon the use of nuclear propulsion.

4. We do not know whether Venus is completely or partially covered with water.

5. It was interesting to find out whether the oxygen and nitrogen in the upper layers of the atmosphere are in the form of molecules or atoms.

6. The classification of amplifiers may be based upon whether or not vacuum-tube elements are employed in the fundamental operation.

7. The question whether or not a certain type of amplifier can meet special technical requirements will be of great importance.

14. Переведите предложения, содержащие служебное слово *for*.

Заметьте, что для перевода *for* важно выяснить, является ли оно союзом или предлогом. Помните, что если *for* стоит перед подлежащим, то это союз (с) — «так как». Если *for* стоит перед обстоятельством — это предлог (прп) — «для», «в течение»).

1. For most of the scientific researches relatively small satellites can be used.

2. For a long time the internal combustion engine was the only type of engine used for aircraft.

3. The Sun provides us with light during the day; it also gives us light at night, for the light of the Moon is only reflected sunlight.

4. The kite flies, for it exposes its flat surface at an angle against the wind.

5. No one can do without friction, for without it we could not even walk.

6. Cybernetics has given experts in space medicine methods for the exact analysis of all physiological processes taking place in the human body.

7. In interplanetary flights a reliable communications system with Earth will be an absolute necessity for successful work.

15. Переведите предложения, содержащие слово **both**.

Для перевода **both** необходимо определить, является ли оно местонимением («оба») или первым компонентом парного союза **both ... and** («как ... так и ...»). Для этого необходимо выяснить, не следует ли за группой слов, начинающейся словом **both**, другая группа — с союзом **and**.

1. Solids have **both** definite volume and definite shape.
2. Both types of propellants are used in modern rocket engines: liquid propellants and solid propellants.
3. The wide range of subjects covered in this book include investigations **both** practical and theoretical.
4. Liquids and gases are **both** fluids.
5. With the increase in thrust levels and the use of the high-energy propellants, **both** size and weight increase greatly.

Лексические упражнения

16. Переведите предложения, обращая внимание на то, что выбор перевода переходного глагола зависит от значения существительного — прямого дополнения (§ 113).

Помните о последовательности действий при переводе: сначала следует перевести существительное-дополнение, а затем глагол-сказуемое.

1. It was very difficult in the early days of atom-smashing to deliver a hit on the nucleus.
2. Storage batteries do not deliver their maximum output at extremely low temperature.
3. A simple radiotelescope consists of a directional antenna which collects incoming radio waves and delivers the collected energy to a receiver.
4. Radioisotopes constitute a potential danger and we must handle them carefully.
5. Using this device, the Geiger counter, is able to handle signals at a rapid rate.
6. It is much more difficult to handle radiation received from reactors in indirect ways.

17. Переведите предложения, обращая внимание на многозначность выделенных глаголов. После перевода предложений назовите еще раз значения глаголов.

gain (1, 4)

1. An atom may gain one or more electrons.
2. Using this type of engine one can gain much in terms of effectiveness.
3. A rocket with a constant thrust continually gains in speed.
4. This book is for anyone who wants to gain, with the least difficulty, a complete understanding of the fundamentals of radio and electronics.

fail (1, 11)

5. All the attempts to explain the processes of emission and absorption through the electromagnetic theory of light **have failed**.

6. The classical laws of both mechanics and electricity fail to predict the behaviour of atoms.

7. Helicopters were used to transport men and supplies to the forward line when ground transport failed.

8. The tsarist government **failed** to appreciate¹ the work of Tsiolkovsky.

9. Some scientists **failed** to realize the role of mathematics in science.

10. The author did not fail to make reference to all the previous works concerning the subject of his article.

suggest (1, 12)

11. The step-rocket for space travel was **suggested** by Tsiolkovsky.

12. The scientist **suggested** a new method of measuring cosmic ray intensities.

13. Rutherford **suggested** that the positive charge of electricity was concentrated in the nucleus of the atom.

14. Ampère **suggested** that the origin of all magnetism lay in small circulating currents associated with each atom.

15. The book "Analytical Mechanics for Engineers," as its name suggests, presents those principles of mechanics that are essential for the study of engineering.

assume (1, 17)

16. It is ordinary **assumed** that uncharged objects contain equal amounts of positive and negative electricity.

17. The air in the "standard" atmosphere is **assumed** to be perfectly dry.

18. A liquid is unable to maintain a particular shape and it immediately **assumes** the shape of the container.

19. Rockets may **assume** a great variety of forms and sizes.

18. **Переведите предложения, выбирая нужный перевод для выделенных словосочетаний.**

in terms of: 1. в единицах, в величинах

2. на основании, с точки зрения

1. Acceleration may be expressed² **in terms of** distance, time and velocity.

2. The force of gravity is measured **in terms of** weight.

3. Jet engines are usually expressed **in terms of** the thrust they produce.

¹ appreciate — оценивать

² express — выражать

4. In order to express the magnitude of a force, some standard force must be selected as a unit in terms of which other forces must be expressed.

5. The basic concepts of thermodynamics are most easily understood in terms of simple experiments.

give rise (to smth.) — вызывать, создавать, являться причиной

6. Most of the primary cosmic rays entering our atmosphere cause nuclear collisions and give rise to secondary particles.

7. The fission of uranium atoms gives rise to a wide range of new isotopes.

8. The use of rockets for solar research has given rise to the development of new types of solar instruments.

19. Переведите предложения, содержащие глагол to exceed (1,10) и его производные. Проследите, как переводятся производные от этого глагола.

1. A number of vehicles have been launched whose velocities are in excess of the escape velocity of 11 km/sec.

2. In long-range ballistic missiles the temperatures of aerodynamic heating may be in excess of several thousand degrees.

3. The flight velocities required for astronautics far exceed those obtainable with a single rocket engine.

4. The noise in the Vostok's cabin did not exceed the noise in the cockpit of a conventional jet plane.

5. The excess reactivity of the reactors can be used for the production of a large number of different kinds of radioactive isotopes.

6. The excessive heat during the operation of the device was one of the problems to be solved.

7. Uranium-235 has similar chemical properties with Uranium-238, but is in other ways exceedingly unlike.

20. Переведите предложения, содержащие словосочетание at least (1,15).

1. Each of these planets has at least one satellite.

2. Engineering now requires a mathematical base at least an order of magnitude higher than that of a generation ago.

3. At least one radioactive isotope is known to exist for all known elements.

21. Переведите предложения, содержащие прилагательные adequate (1,16) и inadequate.

1. Adequate fuel control is one of the principal factors of gas turbines.

2. Some chemicals are not adequate as coolant for the hot thrust chamber walls.

3. The number of ionospheric research stations is still inadequate.

4. Classical mechanics is inadequate for a proper description of events occurring within the atom.

22. Переведите предложения, обращая внимание на то, что выделенные прилагательные имеют близкие значения.

1. The plane was provided with a conventional piston engine.
2. The measurement of the pressure distribution over the surface of a model is a common type of experiment in wind-tunnel work.

3. Ordinary liquids are bad conductors compared to metals.

23. Переведите предложения, обращая внимание на перевод наречий *hardly*, *nearly* (1,20), *readily* (1,30), *necessarily* (0).

Помните, что значения этих наречий нельзя вывести на основе значений соответствующих прилагательных. Сравните значения прилагательных и наречий.

1. Nearly all the models which were tested proved successful.
2. Liquids are perfectly elastic, but they are so nearly incompressible that this property is not of much practical use.
3. The voltage will hardly remain the same during the experiment.
4. In 1918 aeroballistics as a science hardly existed.
5. Cold neutrons are useful as they penetrate most solid materials readily.
6. Radiation in the infrared region can be readily detected by heat it produces.
7. For the application of the computer to the solution of engineering problems a working knowledge of differential equations is necessarily assumed.
8. Plasmas need not necessarily be associated with high temperatures.

24. Переведите предложения, обращая внимание на перевод существительного *evidence* (1,35).

1. During the eighteenth and nineteenth centuries chemists slowly had been accumulating evidence that all matter was composed of atoms.
2. The photographic evidence clearly indicates that approximately 90 per cent of all visually observable meteors are of cometary origin.
3. The 1956 close approach of Mars brought very little new evidence concerning the origin of geometrical patterns on its surface.

25. Переведите предложения, содержащие слова *kind* и *sort*, близкие по своему значению.

Заметьте, что эти слова иногда опускаются при переводе.

1. Electromagnets are widely used in practice in many kinds of power equipment.
2. The Earth itself is a sort of magnet.

3. There are several kinds of energy to be considered in our studies.
4. A rocket may be considered a sort of gun which fires a continuous stream of burning gas.
5. For liquid cooling some sort of radiator has to be provided.
6. Radar is in itself a kind of navigational equipment, since objects can be located with it.

Словообразовательные упражнения

26. Переведите сочетания слов, обращая внимание на то, что прилагательные с суффиксом *-able* переводятся по следующей модели:

observable stars
 ↓
 какие? ← звезды
 ↓
 которые можно наблюдать
 наблюдаемые (видимые) звезды

measurable distances	attainable speeds
explainable mistakes	adjustable gaps
reliable information	unbelievable success
obtainable results	readily separable units
movable installation	easily breakable mechanism

27. Переведите следующие слова, обращая внимание на то, что префиксы *dis-*, *in-* (im-, ir-, il-) , ип- придают словам значение отрицания (например, *correct* — правильный, *incorrect* — неправильный):

continuous <i>a</i>	discontinuous
charge <i>v</i>	discharge
close <i>v</i>	disclose
connect <i>v</i>	disconnect
advantage <i>n</i>	disadvantage
regular <i>a</i>	irregular
complete <i>a</i>	incomplete
correct <i>a</i>	incorrect
divisible <i>a</i>	indivisible
accurate <i>a</i>	inaccurate
movable <i>a</i>	immovable
logical <i>a</i>	illogical
important <i>a</i>	unimportant

Упражнения на перевод терминов

28. Закройте правую часть упражнения (перевод термина на русский язык) и переведите английские термины.

В случае затруднения дайте сначала описательный перевод термина, а затем сравните этот перевод с русским термином, выражающим данное понятие в указанной области техники.

A. Термины, состоящие из двух существительных

acceleration factor (космонавтика)

↓
чего? → коэффициент

↓
ускорения
коэффициент перегрузки

Английский термин	Область применения	Русский термин
picture tube	телевидение	кинескоп
antenna gain	радио	коэффициент усиления антенны
wind tunnel	аэродинамика	аэродинамическая труба
peak energy	ядерная физика	максимальная энергия
range finder	артиллерия	дальнометр
fire adjustment	»	корректировка огня
water space	двигатели	водяная рубашка
load capacity	авиация	грузоподъемность

Б. Термины, состоящие из прилагательного и существительного

artificial antenna (радио)

↓
какая? ← антenna

↓
искусственная
эквивалент антennы

Английский термин	Область применения	Русский термин
artificial horizon	авиационные приборы	авиагоризонт
remote control	авиация	дистанционное управление
direct current	электротехника	постоянный ток
acrobatic maneuvers	авиация	фигуры высшего пилотажа
parasitic antenna	радио	пассивная антenna
aerodynamic missile	ракетная техника	крылатая ракета
original equation	математика	исходное уравнение
straight angle	»	угол кратный 180°
low-flying	авиация	бреющий полет
short-circuit	электротехника	короткое замыкание
rapid change	физика	скакок
low water	океанография	отлив

Упражнения в чтении

29. Прочитайте следующие слова, соблюдая правила чтения буквосочетаний *qu* и *que*:

[kw]

quant, equal, equality, equivalent, quarter, quantity, quick,
quite, require, requirement, sequence, subsequent, subsequently

[k]

technique, torque, monocoque, unique

30. Прочитайте следующие слова из основного текста:

vie [vai]

hypothesis [haɪ'pɒθɪsɪs]

universal [ju:nɪəl've:səl]

adequate [ædɪk'wɪt]

series [sɪərɪz]

interference [ɪn'tə:rərəns]

rectilinear [rek'tɪlɪnɪər]

doubt [daʊt]

suggest [sə'dʒest]

evidence [e'veɪdəns]

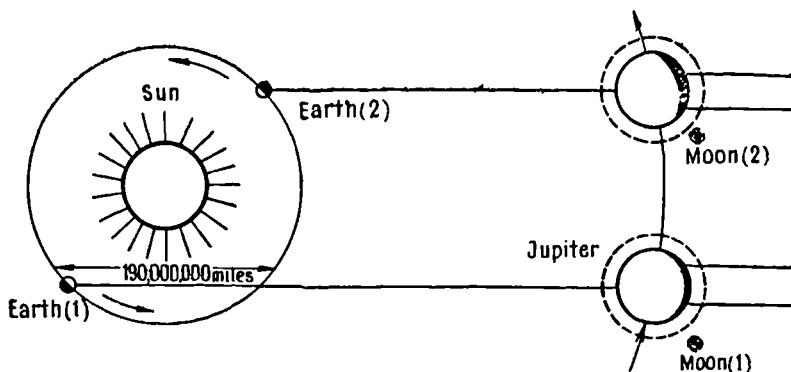
associate [ə'souʃeɪt]

31. Прочтайте предложения, содержащие инфинитивные конструкции. Соблюдайте правильные паузы.

1. The theory *|* was found by the physicists to be adequate enough *|* to explain all the experimental results...

2. For this observation to be described in detail *|* it is necessary...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА


1. WHO WAS THE FIRST TO MEASURE THE SPEED OF LIGHT?

(Для перевода без словаря)

The first measurement of the speed of light was made by a Danish astronomer named Roemer in 1676.

Roemer made observations on the moons that circle around the planet Jupiter. Very often they could be readily seen through a telescope but when they were on the far side of Jupiter they were hidden¹ and could not be seen. After he collected data on the appearance and disappearance of one of the moons, Roemer made predictions of the time and date when the moon should appear after each eclipse². He found that he was able to make correct predictions for a few days in advance³ of a reappearance but not for a week or two in advance. Why was this? He assumed that this was because the relative positions of Earth and Jupiter are constantly changing. When Earth and Jupiter were in position 1, as shown in figure, there was a delay⁴ of about 22 minutes in the predicted appearance of Jupiter's moon. But when, about 6 months later, Earth and Jupiter were in position 2, Roemer's predictions were correct.

Roemer concluded that the delay of 22 minutes was due to⁵ the time taken for light to travel the distance across the orbit of the Earth. The diameter of the Earth's orbit was known to be approximately 190 million miles. When Roemer divided this distance

by the time (22 minutes or 22×60 seconds) he computed the speed of light to be about 150,000 miles per second.

As you know, the approximate value accepted today is 186,000 miles per second (or 3×10^{10} centimeters per second). Thus, although Roemer's value was not quite correct, yet his calculations made in the 17-th century with a limited equipment, were a remarkable achievement.

¹ hide — скрывать, прятать

² eclipse — затмение

³ in advance — вперед, заранее

⁴ delay — задержка

⁵ be due to — обусловливаться

2. GUIDANCE¹

(Для перевода без словаря)

The first subject to be considered is that of guidance. The term "guidance" refers to the information required by a space vehicle in order to make it follow a given path or perform a particular task. "Guidance" is thus distinguished from "control" which is defined as the actual, mechanical procedure used to steer² the vehicle along that path. Guidance and control together constitute navigation, in its broadest sense.

Because the problems which are faced in the different phases of guidance are generally different, it is necessary to distinguish three such phases, namely: initial guidance³, midcourse guidance⁴ and terminal.

Initial guidance is applied during the powered phase of the space flight. Then the motor is cut off and the rocket vehicle is generally detached⁵ from the space vehicle. The latter then coasts⁶ along its orbit or trajectory in space, following a ballistic course with gravitational attraction for example of the Earth, the Moon or the Sun, as the only force acting on the spacecraft.

The purpose of midcourse guidance is to make the needed corrections at some point in the trajectory to compensate for the inevitable⁷ errors and so bring the vehicle closer to its target.

Terminal guidance is used in the final stage of the mission⁸, which may be a return to Earth, the landing of instruments or a manned spacecraft on the Moon, etc.

It should be noted that not all of these guidance phases are necessarily applicable to a particular mission. However, if we want two manned vehicles to meet in space, a combination of several kinds of guidance is necessary for the operation to be adequately completed.

¹ guidance — наведение

² steer — управлять

³ initial guidance — наведение на начальном участке траектории

⁴ midcourse guidance — наведение на среднем участке траектории

⁵ detach — отделять

⁶ coast — лететь в свободном полете

⁷ inevitable — неизбежный

⁸ mission — программа полета

3. LIFE ON THE OTHER PLANETS

(Для перевода со словарем)

The problem of the origin of the Earth proved to be one of the most difficult problems of astronomy. Many theories have been put forward to explain the origin of the solar system. But the problem of life on other planets is still more difficult.

It has been estimated that there are about 100 million universes in that part of space that can be observed through the one-hundred-inch telescope.

But the existence of other planetary systems, though it is a necessary condition for life to exist elsewhere in the universe, is not a sufficient condition. In any planetary system everything seems to be weighed against the possibility of the existence of life; special conditions are needed in order that life may be possible.

If the planet is very near its Sun, it will be too hot for life to exist; if it is very far away, it will be too cold. If it is very much smaller than the Earth, it will have been unable to retain any atmosphere. If it is much larger, it will have retained too much

atmosphere; for when the gravitational attraction is so great that hydrogen cannot escape from the atmosphere the formation of the poisonous gases, which we found in the atmosphere of Jupiter and Saturn — appears to be almost inevitable. There seems to be little chance that life can exist on any world if that world differs greatly from the Earth in size and weight; it must be neither very much smaller than the Earth nor very much larger.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как можно определить в предложении конструкцию «инфinitив как часть сказуемого»? Назовите глаголы — первые компоненты конструкции. Укажите, какие из глаголов этой группы приобретают в данной конструкции другое значение. Какие слова могут стоять между частями конструкции. Укажите возможные способы перевода конструкции (§ 8—14).
2. После каких глаголов может следовать конструкция «инфinitив как часть сложного дополнения»? Укажите, какое значение приобретают глаголы *cause* и *make*, если за ними следует указанная инфинитивная конструкция. Укажите способы перевода конструкции (§ 15, 16).
3. Укажите способы перевода конструкции «*for* + существительное + инфинитив». Какой союз может предшествовать данной конструкции (§ 18)?
4. Как определить функцию инфинитива, стоящего на первом месте в предложении? Укажите способ перевода инфинитива в функции подлежащего и инфинитива в функции обстоятельства (§ 2—5).
5. Укажите место инфинитива в функции определения. Назовите способ его перевода (§ 6, 7).
6. Какие слова могут стоять между частицей *to* и самим инфинитивом (§ 19)?
7. Укажите последовательность перевода слов в предложении, начинающемся с союза *whether* (упр. 13).
8. Какие значения может иметь служебное слово *for* (упр. 14)?
9. Как переводится местоимение *both*, союз *both ... and* (упр. 15)?
10. Чем определяется выбор перевода многозначного глагола (§ 113)?
11. Какое значение придают словам префиксы *dis-*, *up-*, *in-* (*ir-*, *il-*, *im-*) (упр. 27)?
12. Укажите модель перевода прилагательного с суффиксом *-able* (упр. 26).

УРОК ВТОРОЙ

Текст: The Fundamental Problems of Television.

Грамматические основы перевода

Перевод причастных конструкций: определительные причастные обороты (§ 21, 24), обстоятельственные причастные обороты с союзами (§ 22), обособленный причастный оборот, обособленный причастный оборот с предлогом *with* (§ 23), конструкция «причастие + инфинитив» типа *expected to reach* (§ 25).

Перевод служебных слов: *following, assuming, given, depending* (упр. 13).

Различные значения служебного слова *as* (упр. 14).

Лексические основы перевода

Зависимость перевода глагола-сказуемого от лексического значения подлежащего (§ 114).

Перевод наречий, относящихся к глаголу и прилагательному (§ 118, 119).

Перевод слов: *resulting, related, associated, like, involve, fundamentals, essentials, variables, provide, succession, locate*.

Перевод словосочетаний: *by now, by then*, словосочетаний «глагол to be + существительное с предлогом», словосочетаний с глаголом *to take* и словосочетаний со словами *view* и *point*.

Перевод союзов: *provided, provided that, providing*.

Перевод слов с префиксами *sub-, super-, ultra-* (упр. 33).

Перевод терминов типа «причастие I + существительное», «причастие II + существительное» (упр. 34).

ТЕКСТ

THE FUNDAMENTAL PROBLEMS OF TELEVISION

Unlike¹ other inventions such as the cinema or the sound radio, television was not presented to the public in an infant² state. Having been kept in the laboratory for a long time it appeared as a nearly grown-up³. By now⁴ television has already been in practical use⁵ for some time. Yet, we have only begun to develop the resources of television likely to become not only a means of entertainment and education but one of the most powerful research instruments and aids to production efficiency and processing control*.

* processing control — контроль за производственными процессами

The word "television" by common acceptance has come⁶ to mean the essentially instantaneous⁷ transmission, either by wire or radio, of moving pictures or images.⁸

Essentially three steps are involved⁹ in television, namely: 1) the analysis of the light image into electrical signals; 2) the transmission of the electrical signals to the points¹⁰ of reception; and 3) the synthesis of a visible¹¹ reproduction of the original image from the electrical signal.

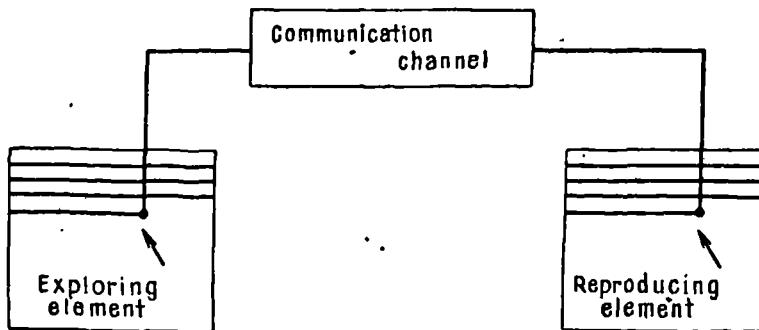
The ordinary concept of a picture or image is that of a surface over which there is more or less continuous distribution of varying light and dark, the distribution changing smoothly¹² with time to conform¹³ with motion in the picture. Here the brightness¹⁴ is a function of the three independent variables¹⁵, x , y and t , where x and y are the horizontal and vertical position of any point on the picture and t is the time. Obviously, such a distribution cannot be transmitted over a single electrical communication channel¹⁶ where the current or voltage transmitted is the function of time only.

In order to overcome this fundamental difficulty it is necessary to take advantage¹⁷ of certain physiological limitations of sight¹⁸ to reduce the amount of information being transmitted. These limitations are the finite¹⁹ resolving power* of the eye and the persistence of vision **. If a picture is subdivided into a large number of small elements, with each element being uniformly shaded²⁰, the picture will still appear continuous, provided²¹ the elements are so small that they are not resolved by the eye. Thus a picture composed²² of a finite number of discrete²³ elements is entirely satisfactory²⁴ for viewing²⁵.

The illusion of continuous motion can be obtained as is done in the case of the cinema, if we form a series of static pictures in rapid succession²⁶, with one picture differing slightly from the preceding²⁷ to correspond to the motion which has taken place in the scene²⁸ (opera, play or sporting event) during the interval between pictures. From this it will be evident that the information known to be necessary to reconstruct a completely satisfactory visual representation of a moving picture, can be conveyed²⁹ by transmission of the brightness values of a finite number of picture elements at finite rate. Therefore, the conditions found to be necessary for the transmission of moving pictures over an electrical communication channel are satisfied.

The picture to be transmitted is analysed³⁰ by the process known as scanning ***.

* resolving power — разрешающая способность


** persistence of vision — инерция зрительного восприятия

*** scanning — развертка

The scanning element at the transmitter end — the **exploring**³¹ element — moves in a continuous or discontinuous line covering the entire surface of the picture. In general the size of the exploring element is equal to a picture element or smaller than a picture element. It generates, either directly or indirectly, an electrical signal which corresponds to the brightness of the area of the image on which it is located³². As the exploring element moves along the scanning pattern * over the surface of the picture the electrical signal varies forming a characteristic complex wave known as the video signal.

At the receiving end of the **link**³³ there is another element — the **reproducing** element — which moves over the **screen**³⁴ in a scanning pattern which is geometrically similar to that at the transmitter. To obtain a picture at the receiver the scanning beam at the receiver must keep accurately in step with that at the transmitter: in other words, at any instant, both scanning beams must be moving over the same line of the image and must be at the same point in that time. Therefore, a reproduction of the picture being transmitted is formed on the screen of the receiver.

The scanning pattern at the transmitter, the exploring and reproducing elements and the communication channel connecting them are symbolically illustrated in the figure below.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Найдите в предложениях простые причастия I и II. Укажите, какую функцию в предложении они выполняют (определения или обстоятельства), и те признаки, по которым вы это определили (§ 21, 22).

Обратите внимание на перевод тех английских причастий, которые не могут быть переданы соответствующей формой русских причастий.

1. Experiments made with radio waves have shown that the atmosphere conducting layer lies at heights above about 85 km.

* scanning pattern — развертка

2. The subject of electricity divides principally into electrostatics, dealing with electric charges at rest, and current electricity, treating of the flow of charge along wires.

3. The principle described above forms the basis of the hydraulic press in which pressure created within a liquid by a comparatively small force acting on a small piston¹ exerts a much stronger force on another piston of considerably larger diameter.

4. Because all bodies have a constant downward acceleration produced by the pull of gravity, the equations of uniformly accelerated motion can be applied to any falling bodies.

5. The figure illustrates typical spectra of this type obtained using the equipment carried in the satellite Ariel.

6. Such water is about 11% denser than that formed from ordinary hydrogen atoms and oxygen atoms and so is called "heavy water."

7. One can carry out studies of solids with neutrons analogous to those done with X-rays.

8. In the reactions discussed the energies required for the various studies of nuclei are in the 1 to 20 Mev range.

9. Rutherford's discovery of nuclear atom, further developed by Bohr, furnished a detailed explanation of the spectrum of the hydrogen atom.

10. The term cyclotrons covers cyclotrones of an entirely different type from those already described.

11. A force may be defined as the action of one body on another body which changes or tends to change the motion of the body acted on.

12. A detailed discussion of the exact nature of all the fundamental particles dealt with in physics is unnecessary in this book.

13. In this chapter we shall give some examples of calculations of various types frequently met with in radar.

14. Electrons play an important part in the operation of thermionic valves, including the magnetron and the klystron.

15. This property of the eye, known as "persistence of vision", is utilized in the cinema and in television.

16. The picture we see on the screen really consists of a single spot of light travelling at great speed.

17. Two reflected rays are needed to locate any image formed by a mirror.

18. Some of the video waveforms met with in radar are very different from sine waves, but it is still possible to deal with these waveforms in certain cases on the sine wave basis, by the use of Fourier's theory.

19. We shall not describe the laws of motion in detail here but they enable us to calculate the subsequent movements of objects acted upon by any set of forces.

¹ piston — поршень

2. Переведите группы слов (A.) и предложения (B.), содержащие сложные формы причастий. Определите их функцию в предложении. Укажите возможные способы перевода.

Образцы:

1. The method **being applied** for...

Метод, применяемый для... (Метод, который применяется для...).

2. **Being applied** in chemistry this method....

Будучи применен в химии, этот метод... (Когда этот метод применяют в химии... или При применении этого метода в химии...).

3. **Having applied** this method we...

Применив этот метод, мы... (После того как мы применили этот метод... или После применения этого метода мы...).

A. 1. The velocity of the particle **being accelerated** in the cyclotron corresponds....

2. The type of reaction **being investigated** will be discussed..

3. The wave theory **being considered** was proposed...

4. Systems **being developed** for use with radioisotopes give...

5. Being associated with the movement of the Earth the satellite orbit changes...

6. Being installed in the satellite the instruments recorded..

7. Having accepted this concept we...

8. Having bombarded uranium with neutrons the scientists obtained....

9. Having gained the positive charge the body fails to attract..

10. Having been put into an orbit the satellite moved..

B. 1. Vectors are essentially geometrical quantities, being defined by a magnitude and a direction.

2. If the type of particle **being detected** can be identified¹, then its energy can be calculated.

3. Being bombarded with slow neutrons, uranium splits approximately into halves producing radioisotopes.

4. A little more complicated example is shown on the picture, which shows a box being pulled by a man.

5. Having studied the electronic structure of electricity, we shall now discuss the quantum structure of light on the basis of the photoelectric effect.

6. The light from the object **being photographed** causes a permanent change in the chemical emulsion.

7. Being heated magnetized steel loses its magnetism.

8. Having defined the units for length, mass, and time, we can express² through them the units for all other physical quantities.

¹ identify — определять

² express — выражать

9. The colour of the light being seen is determined by the frequency of the light waves which affect¹ the human eye.

10. All methods being considered at present use electromagnetic fields to hold the particles.

11. Having studied nuclear reactions we now turn to the question of how these radiations interact as they go through matter.

12. This book is concerned with the design of a specific kind of analog computer in which electrical voltages represent the variables of the physical system being studied.

13. Having listed at the conclusion of the chapter a number of major programmes we now discuss what progress has been made in the systematic study of neutral atmospheric structure.

3. Переведите предложения, содержащие обстоятельственные причастные обороты с союзами. Примените все возможные варианты перевода и выберите из них лучший.

Если вы будете переводить оборот придаточным предложением, не забудьте ввести подлежащее (§ 22, п. 1, 2).

1. It is well known that a solid body emits light when heated to a high enough temperature.

2. An Earth satellite, if launched into an orbit sufficiently distant from the Earth's surface, can circulate for months or even years.

3. Isaac Newton, while studying the gravitational effects of the Earth on objects near its surface, noticed that objects thrown horizontally followed curved paths as they fell to the ground.

4. The forces holding the individual atoms together as a unit are much greater than those which are acting when combining with other atoms.

5. Superconductivity is the name given to a phenomena, shown by some conductors of electricity, which lose all electrical resistance when cooled below a certain temperature.

6. These effects are much less marked if observed with Geiger instead of neutron counter.

7. According to Newton's first law of motion an object remains at rest or in a straight-line motion unless acted upon by some external force.

8. When releasing the nuclear energy in a gram of helium it is possible to produce 190,000 kilowatt-hours of electric energy.

9. When comparing elements one notices the outstanding stability of some electronic structures.

10. Thermionic emission is the name given to that branch of physics which deals with the emission of electrons or ions from metals or non-metals, when heated.

11. Einstein, when proposing the theory of light quanta in 1905, did not state that it represents an absolute truth.

¹ affect — оказывать вредное воздействие

12. One short pulse of light, emitted as a parallel beam, when focused by a lens, carries sufficiently concentrated energy.
13. It is of great importance when working with any optical instrument to know its resolving power.
14. Later, when dealing with alternating electric currents which can be defined as a form of wave motion, we will be meeting the word "phase".
15. The fact that long-lived radioisotopes continually emit energy leads to the interesting possibility of developing an energy source that can operate for long periods when completely isolated.

4. Переведите предложения. Обратите внимание на перевод конструкции «причастие + инфинитив», употребленной в функции определения (§ 25). Назовите глаголы — первые компоненты конструкций, после которых может следовать инфинитив.

Образец:

The ionization **expected** to exist...

Ионизация, *которая, как предполагают, существует...*

1. The rocket is the only power plant known to be independent of the atmosphere.
2. The G-layer is an ionized layer thought to exist at a height of 300—400 miles in the Earth's atmosphere.
3. The diameter of Saturn supposed to be 75,100 miles through the equatorial region is about $9\frac{1}{2}$ times the Earth's diameter.
4. On June 30, 1908 a meteorite estimated¹ to have weighed 40,000 tons fell in Siberia.
5. The pilot is given regular information on the weather likely to be met in flight.
6. The atomic rocket is a power plant appearing to find great application in future.
7. Electric charge of a body is made evident by the attractive or repulsive force found to exist between charged bodies.

5. Переведите предложения, обращая внимание на функцию и способ перевода причастия со стоящим за ним инфинитивом (§ 25).

Сравните:

The ionization **expected** to exist...

Ионизация, *которая, как предполагают, существует...*

The ionization **is expected** to exist...

Ионизация, *как предполагают, существует....*

1. Radar is known to be used to locate aircraft.
Radar known to be used to locate aircraft found its application during World War II.

¹ estimate — подсчитать, установить

2. One of the Siberian meteorites is estimated to have had a diameter of 30 feet.

3. One of meteorites estimated to have had a diameter of 30 feet fell in Siberia.

6. Переведите предложения, обращая внимание на место обособленного причастного оборота в предложении и на способ его перевода (§ 23).

Образец:

The friction of the air producing much heat, the body...

Так как при трении о воздух выделяется большое количество тепла, тело...

...the electrons moving round the nucleus.

...причем электроны движутся вокруг ядра.

1. The Earth's orbit being an ellipse (not a circle), the distance between the Earth and the Sun constantly changes as the Earth revolves around the Sun.

2. The 100-inch telescope can photograph about 100 million stellar¹ systems, each containing many thousands of million stars.

3. The components of the velocity of a body moving in the air being known, the resultant velocity may be found.

4. The Earth is not a perfect sphere, but a little flattened² at the poles, the polar diameter being 26 miles less than equatorial.

5. The distance between Jupiter and the Earth varies because of the different orbital periods of these two bodies, the difference between the maximum and minimum distances being the diameter of the Earth's orbit.

6. The pressure being known at some point in the flow of air, the pressure at another point on the same streamline may be calculated by Bernoulli's law.

7. Most elements have stable atoms, but some like radium or uranium undergo radioactive decay³ and change into other elements, the change being accomplished by a release of energy.

8. After the first nuclear disintegration experiments in 1919 similar experiments took place during the next decade, natural radioactive materials being used as a source of energetic particles.

9. The heat being proportional to the square of the current, the rise in temperature in a hot-wire instrument is also proportional to the square of current.

10. A magnetic field surrounds a current-carrying wire, its strength decreasing as the distance from the wire surface increases.

11. It has been calculated that about 24 million visible meteors reach the Earth's atmosphere every 24 hours, their total weight amounting to about 5 tons per day.

¹ stellar — звездный

² flatten — делать плоским, сплющивать

³ decay — распад

12. Stars differ tremendously in size, the largest ones being several times the size of the Sun and the smallest star being about the size of the Moon.

13. The 101 elements that were discovered or predicted up to 1956 have atomic numbers from 1 to 101, all gaps between these numbers having been filled by now.

14. During the period 1925—1935 many nuclear transformations were produced using as bombarding particles protons, alpha particles, or gamma-rays, these usually being obtained from the particle-accelerating machines, primarily the cyclotron.

7. Переведите предложения, обращая внимание на способ перевода обособленного причастного оборота с предлогом with (§ 23, п. 3).

Образец:

With the airplanes flying higher and faster...

Теперь, когда самолеты летают выше и быстрее...

...with atoms loosing electrons.

...причем атомы теряют электроны.

1. The nucleus of an ordinary hydrogen atom consists of one proton, with one electron moving round it.

2. With to-day's rockets having as many as 10,000 separate components, miniaturization of components is an important phase of development.

3. A cylinder of a gasoline engine is like a gun, with the piston taking the place of a bullet¹.

4. The power of the solar radiation emission was very variable, with emission occurring² sometimes for several days.

5. When sufficient altitude is reached the vertical take-off airplane levels off and flies as an ordinary airplane with the wing providing supporting lift.

6. With magnesium already being used greatly, the three materials: titanium, zirconium and magnesium have greatly reduced the weight of the aircraft.

7. Over 100 different isotopes of more than 20 different elements have been detected among fission products of uranium. All of these atoms are, however, in the middle of the periodic table, with atomic numbers ranging from 34 to 58.

8. Переведите предложения, обращая внимание на причастные обороты, которым предшествует союз as (§ 24).

1. As noted above, in order to lose its entire energy a 5-MeV particle must have about 10^5 collisions.

2. As shown in Fig. 91, beta particles are stopped by less than 1 inch of solid material.

¹ bullet — пуля

² occurs — происходит

3. As explained on page 681, in the following chapter we include the study of the ionosphere.

4. The location of the detectors is as indicated in Fig. 50.

5. The Sun is the best known and most carefully studied star, and its energy production as calculated from nuclear reactions can be compared with well-known astrophysical data.

6. The principle of action equals reaction as offered by Newton is known to be widely used in electrical calculations.

7. The theoretical significance of the wave theory of matter as applied to electronics will be discussed later.

8. As a result of detailed studies of the orbits of a number of satellites as determined from radio and optical observations, it is now known that the temperature above 200 km varies over the solar cycle.

9. Discussing the properties of the upper atmosphere as derived from the use of ground-based equipment we have noted a number of important aspects which cannot be investigated without space vehicles.

10. The reader may be familiar ¹ with vectors as met in physics.

11. The electromagnetic theory (Maxwell, 1862) describes light as consisting of electromagnetic waves propagating through space, as sound waves propagate through air.

12. The first evidence of the structure of electricity as consisting of smallest charges, the electrons, was derived from the laws of electrolysis.

13. In 1908 scientists (following the original suggestion of Balfour Stewart) attempted to develop a detailed theory of the quiet variations as arising from upper atmospheric current flow.

9. Переведите предложения, обращая внимание на то, что причастие в функции левого определения в некоторых случаях лучше передать существительным (§ 21, п. 3).

1. With increased knowledge of these fluctuations we may improve the accuracy of this test.

2. The measured changes of neutron intensity with magnetization of the iron proved that the neutron is influenced strongly by the magnetic fields of the iron atoms.

3. The reduction in propellant weight made possible by the use of nuclear rockets permits an increased payload.

4. The intensity recorded during the first few days after the solar protons had arrived showed the decreased intensity of galactic cosmic radiation.

¹ be familiar — знать, иметь понятие (о чём-л.)

10. Переведите предложения с причастием I в функции обстоятельства.

Учтите, что в указанных примерах английское причастие I в функции обстоятельства лучше переводить не деепричастием, как обычно, а предложением, типа «что указывает на ...» или «и указывает на ...». Этот способ перевода используется в тех случаях, когда действие, выражаемое причастием, по своему содержанию несет не меньшую смысловую нагрузку, чем действие, выраженное сказуемым главного предложения.

1. Subsequent observations showed a high degree of variability, indicating that the X-ray emission changes considerably throughout the sunspot cycle.

2. The greatest electric field that can be maintained in air under ordinary atmospheric conditions is 3×10^6 volt per metre, corresponding to a surface density of 26 microcoulomb per square metre.

3. The nature of the solar particle radiations needs to be explored out to distances of many Earth radii, calling for¹ the use of satellites in eccentric orbits.

4. Ordinary hydrogen has a single proton in its nucleus but its heavy isotope has both a proton and a neutron, making its mass number 2 instead of 1.

5. While working to isolate Polonium, the Curies discovered a second radioactive element, calling it "radium."

6. Certain natural radioactive elements which differ greatly from one another in their radioactive properties were found to be chemically inseparable, suggesting that their external structures are identical though their nuclei differ.

7. The penetration of neutrons through the iron was found to be markedly different, depending whether the iron was magnetized or not.

8. A separate compressor must be inserted in the nuclear reactor in order to circulate the coolant gas, resulting in additional mechanical complexity and further loss of thermal efficiency.

11. Найдите в приведенных предложениях причастие II — правое определение и укажите признаки, по которым вы его определили.

Не смешивайте причастие II в функции правого определения с формой прошедшего времени глагола-сказуемого. Помните, что если после такой формы стоит предлог, то это обычно причастие. Если же в предложении стоят рядом две глагольные формы, каждая из которых может быть формой причастия II или глаголом-сказуемым, то первая будет являться причастием, а вторая — глаголом-сказуемым.

1. The performance of this type of propulsion system obtained in the initial investigations showed some advantages as compared with electric rockets.

2. Pioneer III, launched on December 6, 1958, entered an elliptic orbit with an apogee distance of 107,000 km.

3. Detailed analysis of data obtained in these ways showed that it is this current which produces the very marked variations over the geomagnetic equator.

¹ call for — требовать

4. The standard operating conditions employed included a 50V potential difference between the anode and cathode in the ion chamber¹.

5. The results obtained established beyond doubt that the high concentrations of particle radiation exist in these regions.

6. The results obtained showed no evidence of a marked increase of intensity of solar radiation.

12. Переведите со словарем предложения, обращая внимание на форму и синтаксическую функцию причастий и причастных оборотов (§ 20—25).

1. In fact the Sun is a variable star, its variation following an 11-year cycle.

2. The laboratory study of plasmas had been started long before 1929, many important discoveries in the field of gas discharge phenomena having been made in the 1800's.

3. Whereas solar infra-red radiation can be observed from a high-flying balloon as explained earlier, most ultraviolet and all X-radiation is absorbed far above the balloon ceiling.

4. Since the nuclear rocket is capable of producing greater thrust per pound of propellant, it can produce thrust equal to that of the chemical rocket while using less propellant.

5. With the maximum cycle temperature being limited by the source, the designer must determine how close he wishes to bring the boiling temperature to that maximum condition.

6. In atomic and nuclear processes energies are usually expressed in terms of electron volts, 1 electron volt being the energy gained by 1 electron being acted on by a voltage of 1 volt.

7. Observations made using artificial sodium glows are of great interest to the investigation of atmospheric structure.

8. The ions thus formed will be accelerated in the direction towards cathode.

9. Ohm supposed that wires presented a certain "resistance" to the passage of current, long or thin wires presenting more resistance than short or thick ones. The smaller the resistance, the greater the current.

10. When used in a space vehicle in which the orientation relative to the solar vector changes, the efficiency curve will change with aspect.

11. Using the value of the solar constant, it is found that the Sun is sending out energy at the rate of 9 hp per square centimetre of surface.

12. Having an equatorial diameter of 74,000 mi, Saturn is surrounded by great rings lying in the plane of its equator.

13. A man pulled by the Earth with a force of 160 lb is said to weigh 160 lb.

14. Interplanetary spacecraft using nuclear propulsion are

¹ chamber — камера

expected to be reduced in weight in comparison with nuclear rockets.

15. The word plasma was first used to denote a gas in which an important fraction of the molecules are dissociated into ions and electrons, the gas as a whole remaining electrically neutral.

16. Newton believed that the acceleration of the Moon in its orbit differed in no essential respect from the acceleration of particles acted on by the Earth's gravities.

17. The electromagnetic wave theory of radiation, based on the work of Maxwell and Hertz, was so successful that we must try to apply it to the spectrum just described.

18. Radiation goes through space and when absorbed, it agitates the molecules of the absorbing material so that it is converted into heat energy.

19. The reader is familiar with the great technical importance of electron emission, as applied in radio tubes.

20. Molecules and atoms are in a continual state of motion, with an average velocity depending on the temperature.

21. Having seen how the electrons in the ionosphere are produced by solar radiation, let us ask how the different layers affect the travel of radio waves in the different frequency ranges.

22. This radiation, being little absorbed, penetrates to the D-region and there joins with the X-rays in providing ionization.

23. The alkali atoms have the lowest energies of ionization, indicating that their electronic structures change to a rare-gas structure.

24. The emissive type of photoelectric cell as used in telegraph and television systems is similar in appearance to the ordinary thermoionic valve.

25. A screen material of a different category from those so far discussed is white crystalline potassium chloride: this substance darkens when bombarded with electrons.

26. Launched on Friday afternoon, Mars 3 like its predecessor Mars 2, weighs just under five tons and is said to be on the same trajectory around the Sun.

27. As seen through the telescope, Mars presents a rather smooth surface.

28. When dealing with wave mechanics another limitation of Newtonian mechanics will be discovered applying to low velocities of the lightest particles, that is, low linear momenta.

29. Having challenged the established notion of a fixed Earth, Copernicus put the Sun, instead of the Earth, at the centre of the solar system.

30. A particular flight considered to be representative of early manned missions has been selected as the basis of this study.

31. With 40,000 or more computers being used now, it is obvious that it is necessary to assess their strengths and weaknesses to help make decisions about their use.

32. These properties — and additional properties theoretically predicted — agree so completely with the properties of light, as known from experiments, that the conclusion was inevitable that light consists of electromagnetic waves.

33. Fig. 73 shows the period of revolution of the American satellite Explorer I as a function of time, short-term irregularities having been averaged out.

34. It is apparent from our previous discussion that range does not have the same meaning when applied to energetic electrons as it did for α rays. The range is considered to be the distance an electron travels in a given direction and should not be confused with the quantity X .

35. In the history of physics the Michelson experiment, the Lorentz transformation, and Einstein's theory led to the first demonstration that the familiar laws of physics as derived from everyday experience and simple laboratory experiments are limited.

36. The demonstration experiment described gave the new evidence that the absorption spectrum contains only a selection from the emission lines.

13. Переведите со словарем предложения.

Обратите внимание на то, что слово, внешние напоминающее причастие, может быть служебным словом — союзом или предлогом.

1. Following the initial studies an extended investigation was conducted to determine optimum ion-chamber geometry.

2. Assuming that the electron source, the supply voltage and the magnification are suitably fixed, the only important remaining parameter is defocusing distance L_0 .

3. Volcanic eruptions may be classified in many ways, based on their activity, their relationship through time, or their violence.

4. The most generally useful methods for tracking space vehicles depend on the reception of signals from a radio transmitter within the vehicle. Given such a transmission either interferometric or Doppler methods may be employed.

5. The penetration of neutrons through the iron was found to be markedly different, depending whether the iron was magnetized or not.

14. Переведите предложения, содержащие служебное слово as (с — «так как», «по мере того, как», «как», «когда»; adv — «как», «в качестве»).

1. Physics is the most fundamental of the experimental sciences as it is the most precise and mathematical.

2. As altitude increases, the pressure and temperature changes.

3. A plasma may be defined as a mass of ionized gas in which the concentrations of electrons and positive ions are in equilibrium.

4. During this work it has been found that as the strength increases materials have a tendency to become more difficult to fabricate.

5. The basic concepts of combustion principles are much the same as they were a few years ago.

6. As shown in Fig. 81, beta particles are stopped by less than 1 inch of solid material.

7. Water may exist as liquid, steam or ice.

8. As the air speed rises, the airflow about the wing changes.

9. The purpose of this book is to make available to everyone the status of the utilization of solar energy as of 1969.

10. As we are going to deal with waves quite often we shall have to study some of the technical terms used when considering them.

15. Повторение. Переведите предложения, обращая внимание на перевод конструкций:

A. Инфинитив как часть сложного сказуемого (§ 8)

1. Pluto's time of rotation is assumed to be 6½ days.

2. When the Moon is nearest to the Earth in its orbit, it is said to be at perigee.

3. The highest portions of the aurora have been found to extend to a height of some 500 or 600 miles.

4. Some of the meteor showers are believed to have formed when comets that passed near the Earth broke up or lost some of the material from their heads.

5. As the comet approaches the Sun, gases seem to be exploded out of its head to form gigantic tail that points away from the Sun and extends millions of miles into space.

B. For + существительное + инфинитив (§ 18)

6. If oxygen is present on Mars, its amount is too minute for our instruments to detect.

7. For the resistance of a conductor to be measured, it is necessary to have some fixed standard, say, the ohm.

8. For a body to be in equilibrium under the action of any number of forces, two conditions must be satisfied.

Лексические упражнения

16. Переведите предложения.

Заметьте, что при переводе непереходного глагола (A.) и глагола в страдательном залоге (B.) нужно учитывать лексическое значение подлежащего (а в некоторых случаях также существительного с предлогом, стоящего за глаголом-сказуемым) (§ 115).

Сравните:

A. The rocket travels... Ракета летит...

The propeller blades travel...	Лопасти винта вращаются...
The radiowaves travel...	Радиоволны распространяются...
B. Fission products should be handled with care...	С продуктами распада следует обращаться осторожно...
Telemetry data should be properly handled...	Телеметрические данные должны быть соответствующим образом обработаны...

1. In this particular type of rocket, the separate boost motors lie alongside¹ the rocket body between the wings.
2. The distinction between an elementary system and one which is complex lies primarily in the difficulty of the task to be performed.
3. New methods were developed as a result of this experimental work.
4. Very high speeds were developed when the jet engines appeared.
5. New power plants without propellers were developed in order to drive airplanes at sonic and supersonic speeds.
6. In this chapter equations are developed for microscopic quantities.
7. Transistor oscillations can be used for the same purposes as vacuum tubes, if only frequency and temperature limitations are met.
8. Several general requirements should be met to match² transistor stages in an amplifier.

17. Переведите предложения, которые содержат наречия, относящиеся к глаголу (§ 118).

Помните, что такие наречия отвечают на вопрос «как?», «каким образом?». Если наречие предшествует глаголу, то рекомендуется временно опустить наречие, перевести глагол, а затем наречие (§ 118).

1. It has been repeatedly pointed out that wave motion is associated with vibration of particles.
2. Solid-propellant rockets have been gradually increasing their specific impulse.
3. The navigation system will continuously determine position of the satellite around the Earth.
4. When gases are highly compressed they are characterized by extreme lightness.
5. A gas is composed of individual particles which are constantly colliding with each other.
6. Engineering mechanics is essentially a study of the effects of forces acting on bodies.

¹ alongside — вдоль

² match — подогнать

18. Переведите предложения, которые содержат наречия, относящиеся к прилагательному.

Помните, что такие наречия отвечают на вопрос «насколько?», «в какой степени? (хороший или плохой)». Рекомендуется сначала перевести прилагательное, а затем наречие (§ 119).

extremely difficult problem
↓
какая? ← проблема
↓
насколько? ← трудная
↓
чрезвычайно
чрезвычайно трудная проблема

1. Because there is no working fluid or energy source carried on the vehicle, the photon rocket is **highly** economical in weight.

2. To utilize solar radiation **very** large surface areas are needed and they will be **prohibitively** heavy.

3. Space travel is going to play an **increasingly** important part in our lives.

4. The general activity of navigation in space without external assistance is still **largely** theoretical.

5. At **extremely** high altitudes the different gases composing the atmosphere separate according to their densities.

6. The air in the "standard" atmosphere was assumed to be **perfectly** dry.

19. Переведите предложения, обращая внимание на особенности перевода выделенных причастий (при переводе они требуют добавления некоторых поясняющих слов).

1. Operation of an ion rocket involves three principal processes: generation of ions, their accelerating by electrostatic field, and electrical neutralisation of the **resulting** ion beam.

2. A much less important though **related** problem is the study of interplanetary dust.

3. The shape of the curve is similar to the curves of many associated phenomena.

4. This figure illustrates diagrammatically the nature of the ground-based observations of the solar and **related** terrestrial disturbance phenomena.

20. Переведите предложения, содержащие слово **like** (2,1) и его производные. После перевода повторите еще раз значения выделенных слов.

1. Like charges repel and unlike charges attract each other.

2. Copper **like** all other metals is a good conductor.

3. Oxygen, unlike nitrogen, is highly reactive.

4. Spaceships present an entirely new concept of design and operation, unlike that in the common vehicle.

5. In structure the proton and the neutron are much alike.

6. We can readily liken the processes taking place in the atom to a miniature solar system.

7. The atmosphere can be likened to a large heat engine, with the Sun providing the power and the air acting as a working fluid.

8. Ion rocket is likely to be used for space travel in future.

9. Atomic power aircraft are likely to be large.

10. Mars is unlikely to have an atmosphere suitable for an earthman to breathe¹.

21. Переведите предложения, обращая внимание на перевод словосочетаний **by now** (2,4) и **by then**.

1. By now a considerable data has been collected on the visible light portion of the electromagnetic spectrum.

2. By now some interesting results have been obtained from observations of the solar spectrum made at high altitudes.

3. Guided missiles² appeared during World War II. By then a pulsejet pilotless monoplane and a rocket-powered gyro-controlled missile came into use.

4. Although Mendeleev was not thinking in terms of electrons, for the electrons had not yet been discovered by then, his arrangement of the elements was according to the number of electrons, that is, one for hydrogen to 92 for uranium.

22. Переведите предложения, обращая внимание на перевод словосочетаний «**лагод to be** + существительное с предлогом» (2,5).

1. High-speed electronic computers are in increasing use now.

2. We must remember that solid-fuel rockets have been in use for many centuries.

3. Practical utilization of radioisotopes in large amounts is now under study at the Research Centre.

4. Nuclear reactor aircraft will be in operation in the nearest future.

5. A chapter is included on the common system of air navigation, which is now in operation.

6. One pound of nuclear fuel whose volume³ is in excess of one cubic inch releases energy equivalent to 1,000 tons of fuel oil.

7. The jet airplanes that are already in service have no endless vibration of propellers.

8. New methods of magnetizing hard steel are under development now.

9. Radio techniques⁴ to determine ionization and atmospheric drag on meteors of masses less than 10^{-5} gram are under way in several countries.

¹ breathe — дышать

² guided missiles — управляемые снаряды

³ volume — объем

⁴ techniques — методы

10. The description of Venus was made by means of the most powerful telescopes which **were** then **in** **existence**.

23. **Переведите предложения, обращая внимание на перевод глагола Involve (2,9) и причастия involved в функции правого определения.**

1. Space flight **involves** many different problems varying greatly with different missions.

2. Nuclear radiation **involves** the release of a considerable amount of energy.

3. Teaching pilots to fly **involves** a great deal of training.

4. Energy **is involved** in every motion, in every event.

5. Liquid oxygen has been used in the industry for many years, and no great problems **are involved**.

6. The technical problems **involved** in the construction of an ion rocket are considered in some detail below.

7. Some of the forces **involved** in flight are lift, drag, thrust and gravity.

8. It is the purpose of this chapter to discuss the general principles **involved** in the operation of electronic devices.

9. We have to consider all the factors **involved** in the construction of rocket engines.

10. The mathematical difficulties **involved** in an exact solution of the motion of two or more electrons revolving round a nucleus are very great indeed.

11. Rocket propulsion differs from other propulsion methods only in the relative masses and velocities **involved**.

12. The process **involved** aims at production of heavy water.

13. The reduction of radiation intensities to a safe level for the personnel **involved** is not particularly difficult.

14. When selecting the propellants to be used for any particular rocket there are obviously a great many considerations **involved**.

24. **Переведите предложения, содержащие слова point (2,10) и view (2,25) и словосочетания с ними. После перевода повторите еще раз значения выделенных слов.**

point *n*

1. Rotary motion of a body is such that every **point** of the body revolves in a circular path about some **point**, which serves as the **axis**¹ of rotation.

2. Thanks to radio aids airplanes **can fly to the point** of destination without a human pilot aboard.

3. An important **point** to remember is that the missile itself is usually only a component of a complete weapon system.

4. It is an interesting **point** that all devices and machines function usefully only when some sort of energy change takes place.

¹ **axis** — ось

5. To illustrate the point previously made about the importance of density, Table IV shows the ranges of the gyro-controlled missile.

6. From a physical standpoint, a gas is composed of individual particles, each in continual, irregular motion.

7. It should be noted that up to this point the effects of side wind have not been taken into consideration.

8. The magnetic compass points to the exact magnetic north at only a few places on the earth.

9. It is well to point out here, that the source of the scattered¹ energy is called "target."

view n

10. The pilot must always have a good view from the cockpit.

11. Aircraft piston engines may be classified from the point of view of the arrangement of their cylinders.

12. The book provides an analysis of the action of semiconductors from the physics viewpoint.

13. In view of the tremendous speed of light, its determination must require the measurements either of very long distances or of very short intervals.

14. In view of the definite composition of compounds, we see an immediate distinction between compounds and mixtures.

15. Immediately after Becquerel's discovery of uranium rays the Curies made a careful study of all the then known elements by the electrical methods, with a view of determining whether or not the property of radioactivity was possessed by other substances.

16. Air-to-surface missiles² may be viewed as long range aerial bombs possessing high accuracy.

25. Переведите предложения, обращая внимание на перевод выделенных существительных, образованных от прилагательных.

Сравните:

fundamental a
основной

fundamentals n
основы (основные положения)

1. The fundamentals of alternating current are presented in this chapter.

2. Many variables are involved in the selection of suitable fuels for gas-turbine engines.

3. In all steam engines and turbines there are three basic essentials: 1) the source of heat; 2) the working agent; 3) the sink³.

¹ scatter — рассеивать

² air-to-surface missile — ракета класса «воздух — земля»

³ sink — отстойник

26. Переведите предложения, обращая внимание на перевод словосочетаний с глаголом *to take* (2,17). После перевода назовите основные словосочетания с этим глаголом и повторите их перевод.

1. We must **take advantage** of minimum maintenance and instant readiness of solid propellants.
2. Full **advantage** must be taken of the large internal fuel capacity of this airplane.
3. Holographic methods of information processing is a new field of technique and full **advantage** must be **taken** of it.
4. Chain reaction **takes place** as a result of the fission of the nucleus of such elements as the U-235 isotope.
5. We define an atom as the smallest particle of an element which can **take part** in a chemical change.
6. We must **take into consideration** the amount of force applied.
7. Another layer of the atmosphere that we must **take into account** when planning space communication is the ionosphere.
8. **Take care** not to increase the voltage more than 100 volts during the experiment.

27. При переводе предложений обратите внимание на различные значения глагола *to provide* (2,21) и существительного *provision*. Назовите основные значения этих слов.

provide *v*

1. The rocket engine **provides** the propulsive forces to accelerate the vehicle.
2. We shall discuss now the evidence **provided** by cosmic observations.
3. The rocket **provides** the only practical means needed to place an artificial¹ satellite in an orbit about the Earth.
4. Radioactive isotopes **provide** a new tool for industry and an instrument for scientific research.
5. The International Geophysical Year **provided** the first occasion for a prolonged programme of cosmic ray observations throughout the world.

provision *n*

6. The **provision** for power supply is a problem to be solved.
7. In manned space systems, **provision** is made for maintenance and repair of the power system equipment during a mission.
8. When placing the heat source in the vehicle, **provision** must be made for the heat shunting.

28. Переведите предложения, в которых слова *provided* (2,21), *provided that* и *providing* выполняют функцию союза и имеют значение «если только», «при условии (что)».

1. The density of a body can be found, **providing** its mass and volume are known.

¹ *artificial* — *искусственный*

2. A satellite in orbit is acted upon by only one force, gravity, provided it is high enough to be free of air drag.
3. With the rocket almost any chemicals can be used, provided that they react together and produce hot gases as end-products.
4. Provided the satellite's kinetic energy is high enough to overpower¹ gravity and drag, an object can orbit at any altitude around the Earth.

29. Переведите предложения, обращая внимание на функцию слов provided (2,21) и providing.

Определите, по каким признакам вы установили функцию, выполняемую этими словами.

1. If a short half-life-radioisotope is utilized in the heat source, excess fuel must be provided at the beginning of the mission.
2. Newton not only demonstrated the nature of white light but provided an explanation for the production of colored spectrum by a prism.
3. Hooke's law of elasticity, named after his discoverer, Robert Hooke (1635—1703), states that the deformation of a solid body is proportional to the force acting on it, provided the force does not exceed a certain limit.
4. Experimental studies of plasma properties, although providing quantitative data at specific operating points, have not by now provided the desired relationship between these properties and thruster² operating parameters.
5. The velocity with which a gas will flow from one container to another may be obtained in the same manner as for a liquid, providing the density remains constant.
6. Liquid oxygen systems are not at all dangerous in service, provided all the necessary safety measures are taken.
7. It is possible for an object to revolve in a circular orbit about an attractive centre, provided that the attractive force is of the right magnitude to give it the acceleration which corresponds to the curvature of the orbit.

30. Переведите предложения, обращая внимание на многозначность существительного succession (2,26).

1. If we send sunlight through a prism, we get the well-known spectrum, in which all colours from red to violet are contained in a continuous succession.
2. In an ordinary a.c. circuit the current goes through all its phases in succession.
3. Pulse³ radar uses a succession of short pulses of radio-frequency energy.

¹ overpower — преодолевать

² thruster — двигатель

³ pulse — импульс

31. Переведите предложения, обращая внимание на многозначность глагола *locate* (2,32).

1. All guided missiles need a system which will identify¹ and locate the target.

2. Radioisotopes are used as an inspection tool for locating damaged² parts.

3. The tanks may be located in the wings of the airplane.

32. Переведите следующие прилагательные. Не смешивайте их.

simple, single, similar

complex, complete, complicated

particular, partial

successful, successive

Словообразовательное упражнение

33. Переведите следующие слова, обращая внимание на то, что префикс *sub*- соответствует приставке «под», префикс *super*- — «сверх», префикс *ultra* — «сверх», «ультра»:

subdivide, subdivision, subcommittee, subgroup, supernatural, supersonic, subsection, subtropical, subarctic, subsonic, super-human, superheat, ultra-violet, ultramodern, ultra-short

Упражнения на перевод терминов

34. Закройте правую часть упражнения и переведите приведенные термины. В случае затруднения дайте сначала описательный перевод термина, а затем сравните этот перевод с русским термином, выражающим данное понятие в указанной области техники.

А. Термины, состоящие из причастия I и существительного

actuating mechanism (автоматика)
↓
какой? ← механизм
↓
приводящий в действие
исполнительный механизм

Английский термин	Область применения	Русский термин
actuating pressure	автоматика	рабочее давление
actuating cylinder	двигатели	рабочий цилиндр
translating system	автоматика	система преобразования

¹ identify — опознавать

² damaged — поврежденный

Английский термин	Область применения	Русский термин
halving circuit reacting region detecting element adding element	автоматика ядерная физика автоматика	цепь деления пополам активная зона чувствительный элемент
alternating current	вычислительная техника электротехника	суммирующий элемент
		переменный ток

Б. Термины, состоящие из причастия II и существительного

balanced amplifier (радио)

↓
какой? ← усилитель

↓

сбалансированный

симметричный усилитель

Английский термин	Область применения	Русский термин
distributed amplifier	телевидение	усилитель с распределенной нагрузкой
closed antenna	радио	рамочная антенна
broken circuit	электротехника	разомкнутая цепь
accelerated flight	авиация	полет с ускорителем
assisted take-off	двигатели	взлет с ускорителем
forced cooling	автоматика	принудительное охлаждение
estimated performance	»	расчетная характеристика

Упражнения в чтении

35. Прочтите следующие слова с префиксами sub-, super- и ultra-, соблюдая правильное ударение:

'subdi'vide, 'subdi'vision, 'subgroup, 'submarine, 'sub, section
 'sub'tropical, , sub'arctic
 ,super'natural, 'super'sonic, ,super'human, ,super'heat
 'ultra-'violet, 'ultra'modern, 'ultra-'short'

36. Прочитайте следующие слова из основного текста:

processing [prə'sesɪŋ]
imagine [ɪ'mædʒɪn]
variables pl [və'reɪəblz]
channel ['tʃænl]

instantaneous [,ɪnstə'nenshəs]

image n ['ɪmɪdʒ]
finite ['faɪnɪt]
view ['vju:]
evident ['evidənt]

37. Прочитайте предложения из основного текста, содержащие инфинитивные конструкции и причастные обороты, соблюдая указанные паузы.

1. We have only begun to develop the resources of television likely to become not only a means of entertainment...

2. If a picture is subdivided into a large number of small elements, [with each element being uniformly shaded,] the picture will still appear continuous...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. ATMOSPHERE

(Для перевода без словаря)

Atmosphere is the gaseous envelope¹ surrounding the star, planet or satellite. Whether such a body can retain an atmosphere permanently depends chiefly on its mass, size and surface temperature. The molecules in a gas appear to be in constant motion, with their average² speed increasing as the temperature increases. At any moment, a proportion³ of these molecules will be moving away from the surface of the body, and those whose speed is greater than the escape velocity for the particular star or planet will leave it altogether⁴ and drift into interstellar space. Thus a small light body will constantly lose some of its atmosphere unless its surface is so cold that virtually⁵ no molecules can reach escape velocity.

A more massive body may actually increase its atmosphere by the reverse process: while travelling through space, it sweeps up⁶ interstellar matter by its gravitational attraction, and this is added⁷ to its atmosphere.

In its younger days the Moon is likely to have had appreciable⁸ atmosphere but we have no justification⁹ to assume that this atmosphere was similar in composition to ours. The mere existence of an atmosphere does not mean that the planet may prove suitable for an earthman to breathe there.

Out of the 31 satellites existing in our solar system the only one known to have an atmosphere is Saturn's Titan.

¹ envelope — оболочка

² average — средний

³ proportion — часть

⁴ altogether — совершенно, совсем

- ⁵ virtually — фактически •
- ⁶ sweep up — собирать
- ⁷ add — добавлять
- ⁸ appreciable — значительный
- ⁹ justification — подтверждение, факты

2. EINSTEIN'S PHOTOELECTRIC LAW

(Для перевода без словаря)

To explain the characteristics of thermal radiation, that is, the radiation emitted by hot bodies. Planck (1900) suggested that the emission and absorption of radiant energy by matter is in discrete quanta of energy h .

Einstein (1905) extended this hypothesis and postulated the quantum nature of radiation itself.

It is further seen that the absence of a time lag¹ in photoelectric emission arises naturally, the absorption of quantum energy is instantaneous as is the resultant emission of an electron. This is to be contrasted with the hitherto² accepted view that radiation consists of waves, the energy in the incident³ beam being spread uniformly over the area of the surface on which it falls. An electron which is at the surface or near it requires some time (of the order of seconds) to absorb sufficient energy from the beam to be able to escape from the surface.

The simplicity of Einstein's equation conceals⁴ the revolutionary nature of the concept underlying it. Light and all forms of radiation are emitted, and absorbed, in quanta of energy, the quanta being localized in space.

This is in fact a corpuscular theory, a beam of light or other radiation consisting of a stream of corpuscles called photons. Every photon moves with the velocity of light, and has a definite energy $h\nu$.

The study of the photoelectric effect was of major importance for the development of physical theory during the first two decades of the 20th century. The role known to have been played by the photoelectric effect during this period was largely due to⁵ the manner in which it displayed⁶ the quantum properties of radiation which are not describable by the electromagnetic wave theory.

¹ lag — отставание, запаздывание

² hitherto — до сих пор

³ incident — падающий

⁴ conceal — скрывать в себе

⁵ be due to — объясняться

⁶ display — проявлять, обнаруживать

3. PRINCIPLES OF FUSION (Для перевода со словарем)

It is a property of nuclear structure that of the 104 known chemical elements the nuclei of the very lightest, and again of the very heaviest, are less stable than those of medium atomic weights. Thus energy will be released from these heaviest and lightest nuclei in processes that are known to proceed toward more stable nuclei, the reaction moving in opposite directions for the heavy and the light nuclei. Because of these relations of stability the heaviest atoms emit energy when they split in fission and, thus, are greatly reduced in weight, that is, move toward medium atomic weights. On the other hand, the lightest elements emit energy when they are combined in fusion, hence, also, move toward medium atomic weights. Mass is found to disappear in both processes, and reappear as energy of motion or of radiation, the mass of the nuclei after the reaction in each case being less than the mass before the reaction.

The fundamental difference between fusion and fission reactions is that it is extremely difficult to make light elements react. The interacting nuclei all carry electric charges and, hence, repel each other. Whereas the neutron can enter a uranium nucleus and cause fission even when it is moving extremely slowly, and in fact reacts better the more slowly it moves, the hydrogen nuclei, H^2 and H^3 repel each other strongly and this repulsion must be overcome for the fusion reaction to take place. It is necessary to bring most of the nuclei in the interacting material close together to react and there is only one practical way to attain this condition — to cause all atoms to move with high velocity. At the extremely high temperature that is necessary, some tens of millions of degrees, the atoms move rapidly enough, simply because of the heat motion, so that they approach closely enough to each other for the nuclei to merge and the fusion reactions to take place. We speak of such reactions as thermonuclear reactions, that is, nuclear reactions caused by heat or thermal motions of the nuclei.

When the reaction commences, when some of the atoms approach each other closely enough for their nuclei to fuse, the energy, released from the nuclear reactions causes other atoms to be heated still more; they move more rapidly, and the rate of energy release then increases. This process known to be the one that occurs in the H-bomb enables us to produce very high temperatures.

4. THE CALCULUS¹ (Для перевода со словарем)

With an absurd oversimplification, the "invention" of the calculus is sometimes ascribed to two men, Newton and Leibniz. In

reality, the calculus is the product of long evolution that was neither initiated nor terminated by Newton and Leibniz, but in which both played a decisive part.

In the seventeenth century Europe, a group of scientists strove to continue the mathematical work of Galileo and Kepler. By correspondence and travel these men maintained close contact. Two central problems held their attention. First, the problem of tangents (that is, to determine the tangent lines to a given curve) known to be the fundamental problem of the differential calculus². Second, the problem of quadrature (that is, to determine the area within a given curve), known to be the fundamental problem of the integral calculus.

Newton's and Leibniz' great merit is to have clearly recognized the intimate connection between these two problems. In their hands the new unified methods became powerful instruments of science. Much of the success was due to the marvelous symbolic notation invented by Leibniz. Newton appeared to have been mainly inspired by Barrow, his teacher and predecessor at Cambridge. Leibniz was more of an outsider. A brilliant lawyer, diplomat and philosopher, one of the most active and versatile minds of his century, he learned the new mathematics in an incredibly short time from the physicist Huygens while visiting Paris on a diplomatic mission. Soon afterwards he published results that contained the nucleus of the modern calculus. Newton, whose discoveries had been made much earlier, was averse to publications.

Moreover, although he had originally found many of the results in his masterpiece, the Principia, by the methods of the calculus, he preferred a presentation in the style of classical geometry, and almost no trace of the calculus appears explicitly in the Principia.

Soon his admirers started a bitter feud over priority with the friends of Leibniz. They accused the latter of plagiarism, although in an atmosphere saturated with the elements of a new theory, nothing is more natural than simultaneous and independent discovery. The resulting quarrel over priority in the invention of the calculus set an unfortunate example for the overemphasis on questions of precedence and claims to intellectual property that is apt to poison the atmosphere of natural scientific contacts.

¹ calculus — математический анализ

² differential calculus — дифференциальное исчисление

5. COMPUTERS AND ASTROPHYSICS

(Для перевода со словарем)

Astrophysicists have for many years attempted to understand the nuclear reactions and other physical events occurring in the interiors of stars. Such studies, once entirely theoretical in nature, are currently assuming a much more practical aspect because of

the search for thermonuclear power generating systems. Obviously, the astrophysicist is not able to make a star in his laboratory and measure what takes place inside it.

Until recently, all he could do was to make telescopic observations of real stars that could produce the observed results. In recent years, however, astrophysicists have taken to using the computer to test possible models of stellar interiors. The computer's memory is divided into thousands of small areas, each "cell" representing conditions in a small part of the interior of the star being modeled. The materials in each cell, the reactions taking place, and the flows of heat and radiant energy between the cells can be represented by the experimenter as expressions he provides to the computer's program.

Having set up such a hypothetical model of a star he wishes to study, the experimenter can then "start the star running". The computer calculates the results of the reactions occurring in each cell during a short time interval, then calculates the resulting effects during the next time interval in each neighbouring cell. The effect of each cell on every other is calculated. He can allow the computer to run for as long as he wishes, with the computer in each successive time interval simulating the action of the entire star by computing the interactions in each cell and in every other cell.

The outer periphery of the star will soon show the effect of these reactions (it will emit a certain intensity and spectrum of radiation; the star as a whole may expand, contract, heat up, cool down, or explode). The experimenter is then enabled to check the validity of his model against conditions observed in real stars.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите основные способы перевода простых причастий в зависимости от их синтаксических функций (§ 21, 22).
2. Какие функции в предложении могут выполнять сложные формы причастия?
3. Укажите основные способы перевода обстоятельственных причастных оборотов с союзом. Какое слово при переводе на русский язык явится подлежащим придаточного предложения, если такой оборот будет переведен с помощью обстоятельственного придаточного предложения? От чего будет зависеть время и залог глагола-сказуемого придаточного предложения при указанном способе перевода (§ 22)?
4. Укажите способ перевода обособленного причастного оборота. Какие союзы используются при переводе обособленного причастного оборота, если этот оборот стоит: 1) в начале английского предложения; 2) в конце английского предложения (§ 23)?

5. Какие союзы чаще всего используются при переводе обособленного причастного оборота с предлогом *with*, если этот оборот стоит в начале английского предложения (§ 23, п. 3)?

6. Назовите глаголы, которые в форме причастия II могут быть первыми компонентами конструкции типа *expected to reach* (§ 25). Укажите способ перевода этой конструкции.

7. Какие значения может иметь служебное слово *as* (упр. 14)?

8. Какое значение придают словам префиксы *sub-*, *super-*, *ultra-* (упр. 33)?

УРОК ТРЕТИЙ

Текст: The Rocket Weapon.

Грамматические основы перевода

Перевод герундия и герундиональных оборотов (§26—33). Различные значения служебных слов *after* и *before* (упр. 10).

Лексические основы перевода

Перевод глагола-сказуемого с использованием языковой догадки (§ 113).

Перевод слов: *succeed*, *expand*, *project*, *facility*, *lack*, *prevent*.

Перевод словосочетаний *to be aware of* (smth.) и словосочетаний со словами *all*, *long*, *due*.

Перевод конструкций типа "as high as".

Перевод слов с префиксами *anti-* и *counter-* (упр. 24).

Перевод терминов типа «наречие + причастие (или прилагательное) + существительное» (упр. 25).

TEKST

THE ROCKET WEAPON

The rocket is an unusual device. It constitutes one of the deadliest weapons of modern warfare¹, having realized its operational possibilities in the closing years of the Second World War. Nevertheless², we are aware³ that it is one of the oldest known machines of war.

Here are some historical notes concerning the rocket weapon development.

The method of propelling incendiaries⁴ is assumed to have been discovered by the Chinese. They are supposed⁵ to have used "the arrow of flying fire", which, upon being ignited⁶, was able to fly by itself. By burning his enemies' protective structures, the ancient⁷ warrier succeeded⁸ in accomplishing much more effective destruction⁹ than was possible with any other means at his disposal¹⁰.

Capable¹¹ of producing great power and of attaining¹² the fastest man-made velocities, it is so simple in design and operation that some models have no moving parts at all¹³.

Although rockets have been expected by some to play an important role in the First World War they were used mostly for signalling. In the latter part of the 19th century with the improvement of other ordnance* types, rockets were generally abandoned¹⁴. Instead of employing the rocket the gun was used to utilize efficiently the energy of the expanding¹⁵ gases generated by burning black powder** for propelling a missile¹⁶.

The later development of military rockets passed through a number of phases, as knowledge of explosives and combustibles improved. As early as¹⁷ 1930 the military engineers were said already to be experimenting with highly explosive rockets in an effort to find some means of propelling explosives without using a cannon¹⁸.

The Second World War brought rockets back into the military picture for reasons that are well worth mentioning.

The gun was no longer¹⁹ an adequate defense against the tank or the bombing airplane. Attack upon armoured²⁰ vehicles required some sort of missile possessing enormous striking power and fairly flat trajectory, and above all, a missile that can be shot from a gun or launcher light and quick in movement.

For a time rockets were among the war's most secret weapons. The Soviet Army began using anti-tank and antipersonnel rockets in 1941 near Moscow. It was so unexpected for the Germans that they were unable to make out²¹ what sort of missiles were coming against them. The earliest and most famous rocket weapon used by the Soviet Army was the rocket thrower²² called the "Katyusha". It produced terrific concentration of firepower on an advancing enemy ground troops²³. In spite of²⁴ its accuracy being inferior²⁵ to artillery fire the weapon proved highly efficient due to²⁶ the releasing of a great number of projectiles²⁷ at each discharge which made up for lack²⁸ of accuracy.

In 1944 the Germans began using their rocket bomb V-2 as operational weapons. The first test of these rockets in Germany was not successful, however. After having risen only three feet off the ground, the rocket V-2 exploded, destroying the launching facilities²⁹.

The V-2 was mainly employed in the bombardment of London. Being some 46 feet in length it carried almost a ton³⁰ of explosives; travelling at supersonic speed, it could not be heard approaching its target. The Allies*** are reported to have follow-

* ordnance — артиллерия

** black powder — черный порох

*** Allies — союзники

ed the course of every V-2 by radar, from launching to landing, but were unable to prevent³¹ them from falling in the London area.

In considering rockets, however, it is not necessary to assume that they will be used only for destruction.

We know that the development of rocket propulsion has been linked with the use of the rocket primarily as a military weapon. But the launching of Sputnik I established the rocket in the peaceful exploration of the planets of our solar system. It appears³² that there are many peace-time tasks that rockets may do well and efficiently.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, применяв возможные способы перевода герундия³³. Укажите, по каким признакам, в каждом отдельном случае, можно установить, что выделенная глагольная форма является герундием.

Помните, что глагольная форма с окончанием -ing является герундием (а не причастием I), если перед ней стоит предлог, притяжательное местоимение или существительное в притяжательном падеже, а также если данная глагольная форма выполняет функцию подлежащего или дополнения.

1. We can increase the current by **reducing** the resistance of the circuit.
2. Gases and liquids return to their original form as soon as the applied force has stopped **acting**.
3. The problem of accurately **measuring** the height of the aircraft above the surface of the Earth is a difficult one.
4. **Translating** from one language to another has been accomplished by automatic computer.
5. There are various ways of **charging** a body with electricity.
6. Leaving the earth means **moving** upwards against gravity, and this requires work.
7. The Moon keeps **moving** without slowing down considerably.
8. Before considering the process of **converting** the image into an electrical signal, it is necessary to consider the elements that make up a picture.
9. **Landing** on a celestial body that has no atmosphere can only be done by means of retrorockets.
10. This aircraft has proved to be exceedingly useful for pilots' **training**.
11. Lunik II made history by actually **hitting** the Moon on September 14, 1959.
12. A car is capable of **accelerating** from rest to a speed of 60 mi/hr in 10 sec.

2. Переведите предложения, содержащие герундий.

Заметьте, что перед существительным, следующим за герундием, отсутствует артикль и по внешним признакам нельзя отличить герундий от причастия I. Проблему решает смысл предложения (§ 28).

1. For **converting** electrical energy into mechanical energy we use a special machine called a motor.
2. The idea of **using** hydrogen and oxygen as fuels for interplanetary rockets originated early in the 19th century.
3. From earliest times systems for **weighing** objects and for measuring them have been in use.
4. The Periodic Law pointed out the possibility of **discovering** new elements.
5. By the end of the eighteenth century the method of **making** rockets had greatly developed.
6. **Combining** small nuclei to form bigger ones is called atomic fusion.
7. The problem discussed in this paper is that of **determining** system requirements for **taking** men to Mars and returning them to Earth.

3. Переведите группы слов, в которых функцию определения выполняет герундий или причастие I. Обратите внимание на различные способы перевода герундия и причастия в данной функции (§ 31).

Сравните:

operating engine — *работающий* двигатель (причастие I)
operating principle — *принцип действия* (герундий)

landing plane	burning fuel
landing gear	burning time
landing speed	burning powder
landing field	
	boiling water
	boiling temperature

4. Переведите предложения, обращая внимание на перевод герундия в функции определения.

1. **Flying** training requires some special types of planes.
2. The cylinders of an engine which become very hot must have some kind of **cooling** system.
3. The **landing** speed is determined mainly by requirements of safety.
4. According to the size of the tank the liquid-fuel rocket can have variable **burning** time.
5. The nearly vertical descent of the parachute increases **aiming** accuracy.
6. The **landing** problem like all the other problems connected with rockets contains many difficulties.

5. Переведите группы слов (A.) и предложения (B.), обращая внимание на перевод предлога перед герундием (in «при»; on «по», «после»; upon «по», «после»; by «путем», «при помощи»; without «без»).

A.

1. in accelerating the aircraft...
2. in solving the problem...
3. upon returning to the Earth...
4. upon calculating the speed...
5. on pressing the lever...
6. on connecting the wires...
7. by igniting the mixture...
8. by applying this method...
9. without increasing the speed...
10. without using oxygen...

B.

1. In rotating the magnet, we also rotate its magnetic field.
2. Rocket-thrust can provide valuable assistance in accelerating an aircraft.
3. Upon absorbing a quantum of energy from some outside source, an electron jumps to a higher level.
4. Upon reaching the injectors, the fuel is mixed with the oxidizer.
5. On connecting a galvanometer to the circuit we shall see that there is an electric current flowing.
6. A steam engine is driven by introducing steam into cylinders.
7. We begin our study of algebra by developing the idea of a vector space.
8. A glider is designed to fly without using the power plant.

6. Переведите предложения. Определите, является ли слово, стоящее в начале предложения, причастием I или герундием, и в зависимости от этого переведите предложения.

Помните, что глагольная форма с окончанием -ing, выполняющая функцию подлежащего, — герундий, а форма, выполняющая функцию обстоятельства, — причастие I (§ 29).

Сравните:

Heating the gas increases the speed of the molecules.

Нагревание газа ведет к увеличению скорости молекул.

Losing electrons atoms become ions.

Теряя электроны, атомы становятся ионами.

1. Launching a satellite is done by firing it from a multistage rocket.
2. Overheating an engine is prevented by providing some cooling system.

3. Knowing the landing speed and the load it is possible to calculate the wing area that will be necessary.

4. Landing on a planet (and getting home again) is a problem which has not yet been solved.

5. Measuring any quantity means comparing it with an accepted unit for that quantity and finding out how many times larger or smaller it is than that standard unit.

6. Directing artillery fire was the main task of the first military aircraft.

7. Moving through the magnetic field the coil¹ of wire will cut the lines of force.

7. Переведите предложения, обращая внимание на перевод глаголов make, do, have и be.

1. Boron is used in **making** solid propellants for rockets.

2. According to the laws of physics a rocket will strike the earth after a free fall at about the same velocity as that which is attained in **making** its ascent.

3. Since power is the rate of **doing** work, the amount of work done in a given time is the rate of **doing** work multiplied by the time.

4. Neutrons were found to be particularly effective in **making** radioisotopes and were so used for almost every element.

5. Batteries offer the dual advantage of **having** no moving parts and of converting chemical to electrical energy without need to reject much heat.

6. Gamma rays differ from visible light only in **having** a much higher frequency and a much shorter range.

7. The new device resembles conventional two-element electron tubes in **having** a cathode from which electrons are "boiled" and another electrode to which these electrons flow.

8. The total weight of the cylinders has had to be kept as low as possible; this is done more easily by **having** a large number of comparatively small cylinders than by using a smaller number of large cylinders.

9. The credit² of **being** the father of aviation goes to N. Y. Zhukovsky.

10. In addition to **being** a staging base for equipment, the space station will also be a transfer point for personnel.

11. A great deal of attention has been concentrated on the use of photon-counter methods for X-ray observations. These have the great advantage of **being** adaptable for use in satellites.

12. Besides **being** small in size, equipment of the transistor is light weight.

¹ coil — катушка

² credit — зд. честь

8. Переведите предложения.

Запомните, что герундияльный оборот обычно переводится с помощью придаточного предложения, которое вводится словами «то, что...» в соответствующем падеже или существительным с предлогом.

Образец:

The main disadvantage of early rockets resulted from the rockets being inaccurate.

Основной недостаток первых ракет заключался в том, что эти ракеты не обладали необходимой точностью попадания (были неточными).

1. When a fast neutron strikes a nucleus the probability of its being captured¹ by that nucleus is very small.

2. The less stable a chemical compound, the greater is the chance of its being transformed into another or several other compounds.

3. Launching a vehicle at greater than Earth escape velocity results in the vehicle's taking up an independent orbit around the Sun.

4. When an airplane flies at subsonic speed, the air ahead is warned² of the airplane's coming by a pressure change transmitted ahead of the airplane at the speed of sound.

5. The velocity of a moving object can change by its speeding up, slowing down, or changing its direction of motion.

6. The picture of atom's losing electrons was revolutionary at the time of Thomson's discovery (1897) because it involved the new idea that the electron is an essential part of a neutral atom, a part which in electric discharges may be torn off.

9. Переведите предложения. Примените все возможные способы перевода герундия и выберите для каждого случая наиболее подходящий.

1. In selecting the propellant combinations, chamber pressures and temperatures must be considered.

2. The Mendeleyev's table was used as a guide in determining many chemical and physical properties of elements even before their existence was known by direct observation.

3. Despite the long period of preparation the Germans did not succeed in solving the problem of directional control of rockets in the course of World War II.

4. During World War I the Germans used large powder rockets by sending them across enemy defences.

5. One of the most effective aid to planning is simulating.

6. There are in existence today a wide variety of instruments capable of detecting and measuring the various types of radiation.

7. The ancient Greeks were trying to explain the movements

¹ capture — захватывать

² warn — зд. оповещать

of the planets by assuming the earth to be the centre of the universe.

8. It is worth noting that whenever balloons will do the job it is uneconomical to use rocket-propelled vehicles instead.

9. This aircraft has proved to be exceedingly useful for training.

10. The idea of carrying heavy armour on fighting airplanes appeared in the second half of World War I.

11. The early powder mixtures of the Chinese were good for driving rockets (as they burned rather slowly) but useless for bombs.

12. Computing a reactor shield¹ is a very complicated process if maximum accuracy is required.

13. Mozhaisky is famous for having constructed the first prototype of a monoplane.

14. Connecting two conductors of the same material and of the same length and size in parallel has the same effect as a single conductor twice as large as either of the two.

15. In ramjets combustion is continuous after having been started.

16. Before being exhausted from the ion rocket, the positive ion beam must be neutralized.

17. The problem of rockets coming down in places where they should not is particularly serious in the case of a meteorological rocket.

18. Luna 16 remained on the Moon for 26 hr 25 min and in addition to obtaining rock samples² made measurements of temperature.

19. We shall discuss first Bohr's theory because it contains some of the basic concepts of wave mechanics and avoids³ the complicated mathematics. It therefore avoids the necessity of the reader accepting results he cannot derive.

20. Understanding the mechanics of the Sun has more than academic interest.

21. Obtaining trajectory data is not usually a problem when the launching takes place at an established rocket launching site.

22. Before examining in detail the circuits of each part of the television receiver, it will be helpful to have in mind the overall picture of its operation.

23. The Sun was especially quiet shortly after launching the satellite, being indeed quite free of sunspots.

24. After being launched towards the Moon from parking orbit on 12 September, the automatic station Luna 16 was put into lunar orbit at a height of approximately 110 km on 17 September.

¹ shield — защита

² rock sample — образец скальных пород

³ avoid — избегать, обходиться без чего-л.

25. Information about the distribution of nuclear charge has been obtained by carefully studying the optical spectra.

26. Units of area and volume can be obtained by squaring and cubing, respectively, any unit of length.

27. For light passing from water into air, the critical angle in the water is 49° . In going from glass into air, it is 41° .

28. Although designed for military purposes this rocket, launched vertically, was capable of carrying a payload to an altitude of 100 km.

29. Ultraviolet light is far more effective in producing chemical reactions than visible light.

30. There are considerable advantages for many purposes in launching rockets from balloons. As an example, a rocket capable of reaching an altitude of only 15 km when launched from the ground will reach 100 km when launched from a balloon at a height of 80,000 ft.

10. Переведите предложения, обращая внимание на служебные слова *after* и *before*.

Заметьте, что если после слов *before* или *after* стоят подлежащее, то они являются союзами: *after* «после того, как»; *before* «до того, как», «перед тем, как». Если слова *after* или *before* относятся к существительному, не выступающему в роли подлежащего, то они являются предлогами: *after* «после», *before* «до», «перед».

1. Before the discovery of the structure of atomic nuclei, it was thought that there existed two general types of forces explaining all natural phenomena: electrical and gravitational forces.

2. Before the Second World War rockets were largely experimental.

3. Before attack planes came into use observation planes, fighters and light bombers were employed for ground attack with some success.

4. The word "helium" comes from the Greek word "sun" because that element was discovered in the sun *before* it was discovered on the earth.

5. After it became clear that some mistake had been made in the calculation, the experiment was stopped.

6. After a period of discharge the battery can be restored to its original condition by supplying energy to it from an outside source.

7. After the Sputnik had been launched people all over the world paid tribute to the advance of Soviet science.

8. For days or weeks *after* the reactor has been turned off, the radiation intensity is so great inside that repairs there are never attempted.

11. **Повторение.** Переведите предложения, обращая внимание на перевод конструкций:

A. Причастие + инфинитив (типа expected to reach) (§ 25)

1. The diagram shows the ionization expected to exist at various depths in the atmosphere.

2. Through the telescope Jupiter shows a series of belts¹ found to be located parallel to its equator.

B. For + существительное + инфинитив (§ 18)

3. The biological effects of cosmic rays in space are unlikely to be serious. Artificial satellites stay in their orbits long enough for this problem to be studied in detail.

4. For a battery to be charged it is only necessary to maintain an electric current in it in a direction opposite to that in which the current flows when the cell is in use.

Лексические упражнения

12. Переведите предложения.

Помните, что значение глагола-сказуемого в предложении легко раскрывается без словаря, если опираться на значение существительного — прямого дополнения (§ 113).

1. Cybernetics has brought about a revolution in the design of machines.

2. We shall confine our attention to those major objects in the solar system that are readily accessible, namely Mars, Venus, the Moon and the Earth.

3. From the above-mentioned data we can draw the following conclusion.

4. The application of thermodynamics in chemistry and engineering have yielded many valuable results.

5. The student will acquire all the necessary information from this book.

13. Переведите со словарем следующие предложения.

Помните, что если вам неизвестны значения глагола и существительного — прямого дополнения, то в первую очередь следует искать в словаре значение существительного (§ 113).

1. Charged particles passing through matter experience collisions as a result of which they are scattered and lose kinetic energy.

2. The use of manned satellites imposes restrictions on the construction of the capsule used.

3. It is possible to facilitate the escape of an electron from a conductor by increasing its speed.

4. A digital computer executes a sequence of operations called instructions.

¹ belt — пояс

14. Переведите предложения, обращая внимание на перевод словосочетания to be aware of (smth.) (3,3).

1. People working at the atomic power station must be always aware of the dangers involved in dealing with the reactor.

2. Scientists are not aware of the way how life originated on the Earth.

15. Переведите предложения, содержащие глагол to succeed (3,8). После перевода назовите два значения этого глагола.

1. Jet airplanes and rockets succeeded the piston-engined airplanes.

2. Since Mercury and Venus move in orbits lying between the Earth and the Sun, they are visible only in the hours succeeding sunset and preceding sunrise.

3. Einstein succeeded in calculating that the inertial mass of ray of light equals the energy of the ray, divided by the square of the velocity of light.

4. In spite of many attempts with the very best spectrographic equipment no one has succeeded in detecting water vapour on Venus.

5. Heinrich Hertz, a German physicist, was the first to succeed in producing electrical waves experimentally.

16. Переведите предложения, обращая внимание на перевод выделенных словосочетаний со словом all (3,13). После перевода предложений повторите значения выделенных словосочетаний.

1. The process of creating an electron flow by friction is not used in practice at all.

2. Alpha rays have positive charges, beta rays are negatively charged, while gamma rays have no charge at all.

3. Our aim in writing this book has been, above all, to present an account of modern practice in infra-red technique.

4. After all, the rays of the Sun (as a source of power) can be put to work without much costly¹ machinery.

5. After all, most people think more readily in terms of words than in terms of equations.

6. By 1900 the rockets began to take back seat as war weapons and armies all over the world had abandoned them.

7. First of all, you have to remember the laws governing the motion of bodies in free space.

17. Переведите предложения.

Помните, что сочетания as high as, as low as перед цифрами переводятся словом «до» (вплоть до), сочетания as early as, as recently as — «еще».

1. Some people can hear sounds as high as 20,000 cycles.

2. In the chemical rocket the temperature of gases may be as high as 3,500° Centigrade.

¹ costly — дорогостоящий

3. The voltage dropped to as low as 25 volts.
4. The possibility of releasing large amounts of energy was demonstrated as early as 1919 by Rutherford.
5. The planet Pluto was discovered as recently as 1930.
6. It was as recently as December 1937 that the first flight of radio-controlled airplane using automatic landing techniques was accomplished.

18. Переведите предложения, обращая внимание на перевод слова **long** (3,19) и словосочетаний с ним.

1. Our present knowledge of the structure of the atom has been gained from **long**, difficult experiments conducted by scientists in several countries.
2. Venus appears in the sky early in the evening but does not stay **long**.
3. Through the use of Sputniks we obtained **long-needed** information of cosmic rays intensity.
4. At heights above 25 to 28 miles the atmospheric ozone **no longer** protects against ultra-violet radiation from the Sun.
5. This equation indicates to us the altitudes above which aero-dynamic heating is **no longer** a problem.
6. As **long as** there is a difference of potential between two points in a circuit, there will be a flow of electricity.
7. The heavier-than-air machine maintains flight **as long as** the power plant functions properly.
8. So **long as** the gunpowder goes on burning and producing gas, the rocket will go on moving.
9. It is believed that parachutes were invented **long before** balloons.
10. **Long before** the internal structure of atoms was studied, chemists had learned much about the elements.

19. Переведите предложения, обращая внимание на возможные способы перевода глагола **to expand** (3,15).

1. The gases **expand** when passing through the blades of the turbine.
2. Heat causes the molecules of air to speed up and makes the air **expand**.
3. The cold air is heated in passing through the compressor and it **expands** into the combustion chamber¹.
4. The kinetic theory offers a picture of what takes place when a gas **expands** through a small opening into a region² of lower pressure.

¹ combustion chamber — камера сгорания

² region — область

20. Переведите предложения, обращая внимание на перевод слова due (3,26). Укажите, от чего зависит выбор его значения.

1. A due explanation of the phenomenon of radioactivity was first given by the Curie.

2. Due consideration must be given to missile performance requirements.

3. The forces due to air acting on a body depend on the size of the body, the air density, and the square of the relative velocity.

4. In liquids viscosity is due to the internal friction of molecules.

5. The energy which a body possesses due to its motion is called kinetic energy.

6. The neutron, because of its lack of charge, can proceed into the nucleus; but the proton due to its positive charge is repelled.

7. As the ionisation is mainly due to the action of the sunlight, it is evident that the layers are ionised more during day time than at night.

21. Переведите предложения, обращая внимание на многозначность выделенных существительных.

project (3, 27)

1. The time has come to fulfil projects that seemed fantastic before — manned space flights to the Moon, to Mars, Venus and the other planets of the solar system.

2. Aircraft reactor projects are under development.

3. Over fifty nations were co-operating in the I. G. Y (International Geophysical Year) project.

4. In each space project a large number of specialized fields of engineering and science are involved.

facility (3, 29)

5. The electrical conductivity of a semiconductor is determined both by the number of mobile charge carriers and the facility with which these carriers move under applied field.

6. A pilot flying under condition of unknown wind direction or force should use every radio aid and navigational facilities to determine accurately his position.

7. Gravity measurements with portable gravimeters are made between the various bases of the antarctic as transport facilities permit.

22. Переведите предложения, обращая внимание на перевод слова lack (3,28) в зависимости от того, какой частью речи оно является.

1. The moon lacks atmosphere and water.

2. The lack of autopilot on first guided missiles prevented their successful operation.

3. The guidance system of this missile lacks accuracy.

4. Considering their lack of optical instruments, the work of ancient astronomers was surprisingly accurate.

23. Переведите предложения, содержащие глагол to prevent (3,31). Обратите внимание на управление глагола:

to prevent ... from occurring не позволить произойти

1. Measures have to be taken to prevent radioactive gases from spreading through the air.

2. We have already mentioned the problem of cooling engines, which is necessary to prevent the various parts from becoming too hot.

3. In fact, a fast reactor is a form of atom bomb, prevented from exploding.

Словообразовательное упражнение

24. Переведите слова и группы слов. Обратите внимание на то, что префикс anti- соответствует приставкам «противо-», «анти-», а префикс counter — «противо-», «контр-».

anti-aircraft weapon, antisubmarine attack, antitank gun, antipersonnel weapon, counterattack, counteroffensive, counteraction

Упражнения на перевод терминов

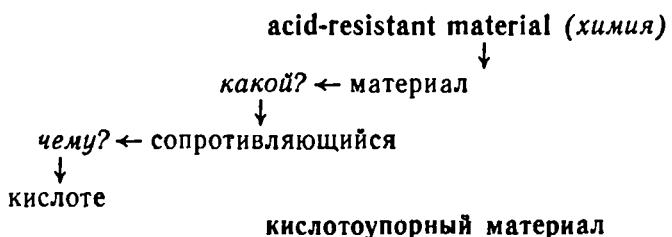
25. Переведите термины. В случае затруднения дайте сначала описательный перевод, который поможет установить, какой термин в русском языке выражает это понятие в указанной области техники.

A. Термины, состоящие из трех компонентов: наречие+причастие (или прилагательное) + существительное

directly fed antenna (телевидение)

какая? ← антenna

как? ← питаемая



непосредственно

антенна с непосредственным питанием

Английский термин	Область применения
continuously adjustable capacitor	электротехника
electronically controlled filter	радиоэлектротехника
remotely controlled plant	»
periodically operated switch	»
horizontally polarized antenna	»
aerodynamically supported missile	ракетная техника
continuously measuring control system	автоматика
highly directional antenna	радио
equally likely possibility	автоматика
internally cooled reactor	ядерная физика

Б. Термины, состоящие из трех компонентов: существительное + прилагательное + существительное

Английский термин	Область применения
corrosion-resistant metal	металлургия
fire-resistant material	»
explosion-resistant design	ядерная физика
voltage-sensitive device	автоматика
light-sensitive cell	радиоэлектроника
photo-sensitive cathode	»
phase-sensitive device	электротехника
gamma-sensitive detector	ядерная физика
temperature-dependent resistor	электротехника
colour-selective characteristic	телевидение

Упражнения в чтении

26. Прочитайте следующие слова, обращая внимание на произношение звуков: .

[θ] through, thorough, throughout, thousand, worth, thermal, thrower

[ð] other, though, although, within, without, nevertheless

27. Прочитайте следующие слова, обращая внимание на чтение буквосочетания ea:

[i:] reach, reason, release, reveal, mean, deal, weak, breathe

[e] dead, instead, already, head, steady, dealt, wealth

Исключения: break [breɪk] ломать

great [greɪt] великий

28. Прочитайте следующие слова, соблюдая правила чтения буквосочетания ei перед безударной гласной:

[ʃ] special, especial, especially, specialize, efficient, efficiently, efficiency, inefficient, ancient, commercial

29. Прочитайте следующие слова из основного текста:

incendiaries [ɪn'sendɪərɪz]

armoured [a:məd]

arrow ['ægru:]

accuracy ['ækjurəsi]

ancient ['eɪn'sent]

personnel [pə:ses'nel]

signalling [ˈsɪgnəlɪŋ]

missile [ˈmɪsəl]

effort [ˈefət]

inferior [inˈfɪəriər]

projectile [ˈprədʒɪktɪl]

allies [ˈælaɪz]

adequate [ədɪkwt]

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. MEASURING STAR DISTANCES

(Для перевода без словаря)

Measuring star distances was first effected¹ as early as in 1835. The principle of the method is simple enough; it is essentially the same as that employed in measuring distances on the Earth's surface. The object which is under study and whose distance is required is observed from two ends of a base-line of known length, the observations giving the angle between the two ends of the base-line. It appears that the difficulty of measuring star distances arises from the fact that the longest base-line available² for the purpose is very short compared with the distances of the stars involved. By making the observations when the Earth is at the two ends of its orbit, a base-line of about 186,000,000 miles is obtained. No longer base-line is possible.

It is convenient to express³ star distances in terms of the time that light takes to travel. Light travels with a speed of 186,000 miles a second, so that in the course of a year it will travel a distance nearly six million million miles. Thus, instead of saying that the nearest star is nearly 25 million million miles away from us, we may say that it is about four light-years away.

This way of expressing the distance is very interesting because it reminds⁴ us, that we see the star not where it is at the moment, but where it was at least four years ago.

There is a limit to the distances that can be determined by direct measurement. For distances greater than about 500 light-years, the results become rather uncertain. The methods to be used are quite different. Such a method has been suggested, and the evidence that has been obtained within the last two decades about the structure of the universe has been gained, in a very large measure, by the application of this method. It is based on the special properties of a particular class of stars. These stars do not shine⁵ with a steady constant light, there are fluctuations in their brightness. These fluctuations have been found to be associated with regular pulsations of the whole star. The time required for a single pulsation to be completed, though it is constant for any one star, ranges for different stars from several hours to about 30 days. There is a definite relationship between the period of pulsation and the candle-power⁶ of the star, so that if the period is known, the candle-power can be found out.

There is no difficulty in finding the time taken by a pulsating star in going through one complete cycle of light variation. It is doubtless that the longer the period of pulsation, the greater is the candle-power of the star. Thus, for example, if one pulsation is completed in two days, the candle-power is 260 times that of the Sun; if it is completed in ten days, the corresponding candle-power is 1,700 times that of the Sun.

It will be noticed that the candle-power in each of these examples is far greater than that of the Sun. The pulsating stars are all very bright. Their brightness makes it possible to see them far away across the space. It is this fact that makes them so useful in the exploration of space to great distances.

Having discussed the general principles that underlie the determination of great distances, we can summarize the information that has been derived about the universe in which we find ourselves.

¹ effect — осуществлять

² available — доступный, имеющийся в наличии

³ express — выражать

⁴ remind — напоминать

⁵ shine — светить

⁶ candle-power — яркость свечения

2. BODE'S LAW

(Для перевода без словаря)

In 1772 Johann Elert Bode discovered a very convenient way of obtaining the approximate distances of the planets from the Sun without going through all the mathematics required by either Kepler's or Newton's laws. This relationship is known as Bode's law, but there seems to be no reason for its existence. It cannot be explained by any known theory. It may have no physical meaning; nevertheless it is a remarkable way of remembering planetary distances.

If we start with the figures 0, 3, 6, 12, 24 and so on¹, doubling² each time after the zero figure, then adding³ 4 to each one, and finally dividing by 10, we obtain the distances from the planets to the Sun in astronomical units.

The following table gives a comparison between the distances determined by Bode's law and their actual value.

¹ and so on — и так далее

² double — удваивать

³ add — добавлять, прибавлять

MEAN * DISTANCE FROM THE SUN

Planet	Bode's law (a. u.)**	Actual distance (a. u.)
Mercury	0.4	0.39
Venus	0.7	0.72
Earth	1.0	1.00
Mars	1.6	1.52
Asteroids	2.8	2.8 (Ceres)
Jupiter	5.2	5.20
Saturn	10.0	9.54
Uranus	19.6	19.19
Neptune	38.8	30.07

* mean — средний.

** a. u. (astronomical unit) — астрономическая единица.

3. CHEMISTRY AND THE ATOMIC THEORY

(Для перевода со словарем)

Chemistry has long assumed that material substances are composed of atoms; and the actual investigation of the properties of material substances shows them to be divided into two classes: compound substances, which can be reduced to simpler ones by appropriate methods; and the simple substances themselves — the chemical elements — which resist any attempt at such reduction.

The study of the quantitative laws, in accordance with which the simple substances combine to form compounds, led chemists during the last century to adopt the following hypothesis:

"A simple substance is supposed to be formed of small particles, all identical with each other, called the atoms of this element; compounds, on the other hand, are supposed to be formed of molecules resulting from the combination of a number of atoms constituting the simple substances". According to this hypothesis, therefore, a composite substance is broken up by reducing it to the elements of which it is composed which means that its molecules are disintegrated and the atoms which they contain set free. All material substances are regarded to be constructed from 104 different kinds of atoms.

The atomic theory not only succeeded in introducing order into chemistry: it also extended into the domain of physics. For if material substances are composed of molecules and atoms, then their physical properties must be capable of explanation in terms of their atomic structure. The properties of the various gases, for example, must be explicable on the assumption that a given gas consists of an immense number of molecules or atoms in rapid motion; the pressure of a gas on the wall of the

containing vessel will then be due to the impacts of the molecules against the wall, while the temperature of the gas will be the measure of the average of the motion of the molecules, which increases as the temperature rises.

During the second half of the nineteenth century, this view of the structure of gases was developed under the name of the Kinetic Theory of Gases, and it enables us to understand the origin of the laws governing the behaviour of gases as discovered experimentally. For if the atomic theory is correct, then the properties of solids and liquids must be capable of interpretation on the assumption that, in the solid and the liquid states, the molecules or atoms are much closer to each other than in the gaseous state. Thus there is an interplay of considerable forces between atoms and molecules in these states, and these should account for such characteristic properties of solids and liquids as incompressibility and cohesion. The atomic theory of matter, again, has been confirmed by direct experiments by means of which it has been possible to measure the weights of different kinds of atoms and to find their number per cubic centimetre.

4. CYBERNETICS APPLIED TO SPACE

(Для перевода со словарем)

Cybernetics is the study of control and communication mechanisms in machines and animals. It covers all automatic control devices, selectors, relays, computers and robots, and also the corresponding physiological mechanisms such as those of automatic balance and reflex action. The application of cybernetics to electronic computers is known to be leading to a better understanding of the working of the brain, and conversely a deeper knowledge of the "human mechanism" is expected to lead to the development of machines of almost human capability. It is known that Russian scientists have been making a close study of the implications of this work in astronautics and the results may be applied to the problems of spacecraft control and the remote analysis of the planets.

Cybernetics has brought about a revolution in the design of machines. By revealing the profound analogy between the work of the computer and the work of the control system of the living organism, cybernetics has brought a new approach to investigations in biology and medicine.

Cybernetics has been of great assistance in the pre-flight training of cosmonauts. Besides making it possible to design various automatic simulators, the science has given experts in space medicine methods for the exact analysis of all the physiological processes taking place in the human body under diverse conditions. The results of this analysis have made it possible

to draw up a list of requirements which must be met by the spaceship, and it has also been possible to select the people best fitted to travel into space.

It is quite obvious that much greater accuracy is required in controlling the course of a rocket for a flight to other planets than that required for launching an artificial Earth satellite. What is more important, the very character of control of the spaceship during interplanetary flight must differ in principle from the techniques used for controlling orbital flights. The distances between the Earth and even the nearest planets are measured in millions, not hundreds, of miles. Under these conditions the fact that signals transmitted from Earth to the interplanetary ships and back will be subject to considerable delay will be of particular importance. The speed with which such signals travel cannot exceed the velocity of light, which exceeds 186,000 miles/sec. Although that is a very high velocity, under the conditions of interplanetary flight, it is insufficient to permit control of the spaceship from Earth.

This extremely difficult problem can be solved through the application of cybernetics.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. По каким признакам можно опознать герундий в предложении (in using the engine; their launching produces noise; pilot's training requires much time; Heating the gas increases...; The force stopped acting...) (§ 28)?

2. С помощью каких частей речи герундий, как правило, переводится на русский язык (§ 33)?

3. Какие формы имеет герундий и как они отличаются по значению (by using the method, after having used the method, before being used) (§ 27)?

4. Как отличить герундий в функции левого определения от причастия I в этой функции (landing speed, landing plane) (§ 31)?

5. Как можно определить, является ли слово, оканчивающееся на *-ing* и стоящее в начале предложения без предлога, герундием или причастием I? Как нужно переводить эту глагольную форму в том и другом случае (§ 29—30)?

6. Как переводятся предлоги *in*, *on*, *upon*, *by*, *without* перед герундием (§ 32)?

7. В каких случаях герундий обязательно переводится с помощью придаточного предложения (The disadvantage resulted from the vehicle's being inaccurate) (упр. 8)?

8. Какие значения имеют служебные слова *after* и *before* (упр. 10)?

9. Каким приставкам соответствуют префиксы *anti-* и *counter-* (упр. 24)?

УРОК ЧЕТВЕРТЫЙ

Текст: Some Ramjet Propulsion Aspects.

Грамматические основы перевода

Группа существительного (§ 82—90). Приложение (§ 91, 92).
Различные значения служебного слова *since* (упр. 8).

Лексические основы перевода

Зависимость перевода прилагательного от лексического значения существительного, к которому оно относится (§ 112). Зависимость перевода существительного от лексического значения правого определения (§ 111).

Наречия с усилительным значением (§ 120).

Перевод слов: *Inherent, tend, specify, enter, promise, appreciate, propel, leave, suffer, lead, available, item, impact, technique, scale, current, present*.

Перевод словосочетаний со словом *so*.

Перевод терминов типа «существительное + предлог + существительное» (упр. 22), «существительное + прилагательное (free или tight)» (упр. 23).

ТЕКСТ

SOME RAMJET PROPULSION ASPECTS

An air-breathing engine produces thrust by taking in air from the atmosphere and discharging it at a higher speed than the speed at which it was introduced¹.

The simplest air-breathing engine is the ramjet—a unit having no moving parts at all and consisting simply of air inlet² designed to convert the kinetic energy of the air to static pressure, a combustion chamber³ and final⁴ expansion nozzle⁵. In principle the engine under consideration is similar to turbojet but the absence⁶ of moving parts permits⁶ operation at much higher temperatures. The major advantages of the ramjet are its extremely⁷ low weight, relative simplicity and low cost⁸, but it requires operating air

* final expansion nozzle — выходное расширяющееся сопло

speeds of the order of 1,500 to 2,000 m. p. h. before its specific⁹ consumption becomes competitive¹⁰ with that of the turbojet.

The major limitation of the engine in question is that when it is at rest, there is no ram effect* and hence no thrust. To obtain the necessary pressure ratio¹¹, the ramjet needs external¹² assistance to reach the designed operating speed and become self-sustaining**. The ramjet produces thrust only when some other propulsion system has brought it up to the necessary speed.

For these reasons it was used mainly in guided missiles and the necessary acceleration thrust was provided by solid booster¹³ rockets which could be jettisoned¹⁴ in flight without undue difficulty. Because of its inherent¹⁵ simplicity the ramjet found application as a rotor tip¹⁶-drive unit*** for small helicopters, in spite of its high fuel consumption at subsonic air speeds.

The ramjet is supposed to reach its greatest overall¹⁷ efficiency somewhere in the range of Mach 4 to Mach 10 (hypervelocity). Unfortunately¹⁸, there are two factors which tend¹⁹ to set an upper²⁰ limit to the speed at which the ramjet will be at its best. Both limitations are due to high temperature.

The first factor is that entry²¹ air is heated by compression. At a flight speed of 3/4 mile/sec. the ram temperature**** is 580°C and the internal surfaces of the engine become heated to a temperature only a little lower than this. At 1 mile/sec. the ram temperature is 1,020°C, and it is evident that further increases in speed will result in increases in ram temperature. But the temperature of the gases leaving²² the combustion chamber must be appreciably²³ higher than the ram temperature to produce thrust, while the fuel flows available²⁴ are too small to be used for effective cooling. Since material strength properties are seriously reduced at high temperature, it follows²⁵ that an increase in temperature demands improved materials for the combustion chamber and other parts or direct cooling of these items²⁶ for the engine reliability not to suffer²⁷.

The second factor is that high ram temperatures of hypersonic flight limit the combustion temperature rise and therefore limit available ramjet thrust. Due to dissociation of combustion products a significant²⁸ increase in gas temperature can no longer be achieved, at least with chemical fuels currently²⁹ in use.

The advances in rocket technology led³⁰ many people to belittle the future of supersonic air-breathing engi-

* ram effect — скоростной напор

** self-sustaining — автономный в полете

*** rotor tip-drive unit — реактивный двигатель на конце лопасти несущего винта (вертолета)

**** ram temperature — температура торможения

nes. However, with several Earth satellites having been put into orbit, there has been a revival³¹ of interest in the potential of ramjet engines.

If hypervelocity flight within the atmosphere is desired, the rocket engine may find serious competition from the air-breathing hypervelocity ramjet. It appears that for flight within the Earth's atmosphere a ramjet-powered vehicle will have a tremendous advantage in weight, range or payload over a rocket-powered vehicle. For instance, the ramjet as compared with a rocket engine will need a smaller supply of vehicle transported propellant³² to produce a given thrust for a given period of time. This saving³³ of propellant is of great importance.

So³⁴ there appears a promising³⁵ future for hypervelocity ramjets. Some scientists suppose that ramjets are likely to have a considerable impact³⁶ on air transport in coming years. Though much research and development work is still needed, particularly in such areas as hypersonic inlets, materials and cooling techniques³⁷, and real-gas kinetics, Mach 7 to 10 engines are expected³⁸ to appear in the near future.

Aerodynamic testing facilities now in use or under development will be adequate for most of the hypersonic inlet work. However, high temperature subsonic and supersonic facilities will be needed to investigate subsonic and supersonic mixing³⁹ and combustion under realistic conditions and high temperature hypersonic propulsion test facilities will be needed for full-scale⁴⁰ testing of engines.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите группы слов, содержащие прилагательные, употребленные в качестве правого определения (§ 89).

Обратите внимание на то, что прилагательные, не имеющие пояснительных слов, при переводе можно поставить перед существительным.

Образец:

The energy available from fission...

Энергия, получаемая в результате расщепления...

Энергия, которая получается в результате расщепления...

The energy available was used...

Полученная энергия была использована...

Энергия, которая была получена, использовалась...

1. The model available is...

The model available for the test is...

2. The amount of radiation present influences...

The amount of radiation present in the atmosphere presents...

3. Any changes **necessary** must be made...
4. The highest speed **possible** is obtained...
5. The simplest form of engine **imaginable** is a rocket...
6. The molecules **free** to vibrate are...
7. Layers close to the earth are influenced by...
8. Components **common** to most turbines are made...

2. Переведите группы слов, содержащие в качестве правого определения словосочетания существительного с предлогом (§ 90).
Обратите внимание на то, что значение этих сочетаний не всегда легко вывести из значения существительного и предлога, поэтому их необходимо запомнить. Примените способы перевода, приведенные в образце.

Образец:

The model **under construction**.
Модель, которая разрабатывается.
Разрабатываемая модель.

1. The method **in use** preceeded...
2. The type of missile **under consideration** gained...
3. The program **under development** was suggested...
4. The aircraft now **in service** were constructed...
5. The types of power plant **in existence** satisfy...
6. Any speed indicator now **in operation** possesses...

3. Переведите предложения, обращая внимание на перевод слов, выполняющих функцию правого определения (§ 89, 90).

1. The scales in common use to-day are the Fahrenheit, Kelvin and Centigrade.
2. Very little has been published about guided weapons in production or under development.
3. The voltage of a generator in operation tends to change when the load changes.
4. The object of mathematics is to discover the equations which express the mathematical laws of the phenomena under consideration.
5. The model in question is a checked mathematical description of a complex system.
6. Beta radiation was originally assumed to be the emissions of "beta" rays, but later investigation showed that the particles in question were electrons.
7. We are aware that the same general mathematical treatment is applicable, whether the material in question consists of a single pure radioisotope or of a complex mixture of such isotopes.
8. The material for the report has been derived from recent sources available.
9. Most laboratories have small machines of various kinds available for demonstration purposes.
10. The atomic number tells the number of protons present.

11. There are several components common to most turbine engines.

12. The air in the atmosphere close to the earth is compressed by the weight of the air.

13. Neptune and Pluto, visible only with the telescope, were discovered in 1846 and 1930 respectively.

14. It is clear that to observe radiation in the wavelength range extending from 2900 Å to 1 Å or less, it is necessary to send equipment up to altitudes unattainable by balloons.

15. The wavelength resolution achievable by pulse height analysis is illustrated in fig. 70.

4. Переведите группы существительных. Начинайте перевод с основного слова, которое стоит последним в группе. Затем поставьте соответствующие вопросы к каждому последующему слову, двигаясь справа налево.

Помните, что при переводе слов придется по смыслу решать, является ли переводимое слово определением к стоящему от него справа слову или оно относится к основному слову группы (§ 84—86).

1. a satellite-carrying rocket
2. pressure-measuring devices
3. rocket-assisted take-off
4. laboratory-obtained velocities
5. acceleration-dependent force
6. piston-engined aircraft
7. first man-made earth satellite
8. present-day high-powered engines
9. neutron-produced nuclear reaction
10. high-speed passenger-carrying airplane
11. newest deep sea current measuring device .
12. rocket-propelled anti-aircraft missile
13. pressurized liquid-propellant rocket power plant
14. first liquid-propellant rocket engine

5. Переведите предложения, содержащие группы существительных.

Помните, что основное слово стоит последним в ряду слов, между которыми нет ни артикляй, ни предлогов. За основным словом может стоять предлог, причастие, прилагательное или союзное слово, имеющее значение «который» (§ 83).

1. On April 12, 1961, in the U.S.S.R., the world's first satellite spaceship «Vostok», with a man on board, was put into orbit round the Earth.

2. Isotope power sources have some limitations.

3. The normal wavelength range covered in astronomy is 3,000 to 9,000 Å.

4. Different automatic pilot systems provide a wide variety of control.

5. K. E. Tsiolkovsky, in 1903, made the first specific liquid-propellant rocket engine proposal published in "The Scientific Observer".

6. Low-energy radio waves are reflected and absorbed by the electrons and ions of the ionosphere.

7. Propellant flow rates must be extremely large for high-thrust engines.

8. The large long-range space probes carry large amount of equipment.

9. The performance of a rocket is determined largely by the rocket-propellant combination and the total amount of usable propellants.

10. The gas-filled free balloons are used for scientific purposes.

11. There are several types of pressure-sensitive measuring devices which are in use to-day.

12. The pressure-fed systems do not require pumps and turbines.

13. A lightweight, highly efficient insulating material designed to protect a space vehicle's liquid hydrogen fuel against evaporation has been developed recently.

14. The pressurized liquid-propellant power plant has been used for rocket-assisted take-off power plants for aircraft.

15. Guided missile and high-supersonic-speed piloted aircraft are typical ramjet applications.

16. The production of light-weight, high-strength cases is a major development problem in the solid-rocket field.

6. Переведите предложения, обращая внимание на то, что существительное приложение при переводе должно стоять в том же падеже, что и существительное, к которому оно относится (§ 91).

Образец:

The article deals with the instrument for measuring temperature — the thermometer.

В статье рассматривается прибор для измерения температуры — термометр.

1. In the preceding chapter we introduced the electric generator, the machine that converts mechanical energy into electrical energy.

2. A good deal of our knowledge of the Earth's nearest neighbour, the Moon, has been gained through the observations of astronomers.

3. The modern concept of the atom is based on quantum mechanics, a mathematical theory which helps to predict the behaviour of electrons in atomic systems as a function of t and in the presence of radiant energy.

4. The idea of an automatic computer, a machine able to perform a great number of operations of both arithmetic and logic is more than 120 years old.

5. The performance of propellants is characterized by the

specific impulse, a measure of the number of pounds of thrust produced per pound of propellant consumed per second.

6. Almost the whole "mass" of the atom is contained in the nucleus which is composed of protons — the carriers of the positive charge — and neutral "neutrons".

7. **Переведите предложения.**

Заметьте, что существительные со значением «факт, вопрос, проблема, свойство», сопровождаемые пояснительными словами, могут играть роль приложения, относящегося ко всей предшествующей части предложения.

Образец:

The main disadvantage of gas turbine is high fuel consumption, a problem that can be solved...

Основным недостатком газовой турбины является большой расход топлива — проблема, которую можно решить...
(Эту проблему можно разрешить...)

1. It was shown in 1938 that uranium, after absorption of a slow neutron, can split approximately into halves — a process that soon became known as fission.

2. It is interesting to remark that 746 watts is equal to 1 horsepower, a comparison that serves to give some idea of the power represented by 1 watt.

3. It turned out that a gas upon expanding undergoes a reduction in pressure, a fact which is helpful in studying the mixture of several gases.

4. In recent years particles of atomic nuclei have been split into two, a process called fission, and, also, some nuclei have been merged¹ with others, a process called fusion.

5. The current sensitivity of a voltmeter is often expressed in ohms per volt, a value obtained by dividing the resistance of the voltmeter by its capacity.

6. The direction of a beam of light can be altered by reflection or refraction, a process upon which are based the design and operation of most optical instruments.

7. As we have already noted, the heavy charged particle can also interact with the nucleus (Rutherford scattering), a process of great importance in the development of the theory of the nucleus.

8. **Переведите предложения.**

Помните, что слово *since* может быть союзом и предлогом и в зависимости от этого переводится по-разному: *since* (cj) — «так как», «с тех пор, как»; *since* (prp) — «с» (со времени).

1. **Since** the distance of the electrons from the nucleus is about a hundred thousands times as large as the diameter of the nucleus, most of the atom consists of empty space.

¹ merge — соединяться, сливаться

2. Since the end of World War II there has been a rapid development of jet engines.

3. Since the first rocket appeared many changes has taken place in this field of science.

4. Since the jet engine is a powerful source of energy, it is widely used for machines flying at supersonic speed.

5. A few elementary substances, such as gold, silver, copper, have been known since old times.

6. Sixty years have passed since the day when radio was discovered.

7. Since the lift and the drag are very much dependent on the angle of attack of the wing, it is necessary to give a definition of this angle.

8. For producing currents of many amperes, electric generators of various sizes have become available since Volta's time.

9. Since the fission fragments only move a minute distance from their point of origin, nearly all the heat is produced close to the point where fission occurs.

9. Повторение. Переведите предложения, обращая внимание на перевод конструкций:

A. Инфинитив как часть сказуемого (§ 8)

1. The inside temperature of the Sun is estimated to be about 30,000,000° C.

2. The most abundant elements in the universe are thought to be the lighter ones such as hydrogen, helium, carbon and others.

3. In 1904, semiconductors were shown to be good detectors of radio waves.

4. Since the majority of readers are not likely to have a detailed knowledge of nuclear problems this paper will discuss the problems.

5. The object of this paper is to discuss the effects that meteors may be expected to have on space vehicles.

6. Large planets may be expected to have much more extensive atmospheres than that of the earth.

Б. Обособленный причастный оборот с with (§ 23, п. 3)

7. Ordinarily, meteors glow¹ at heights of 120 to 80 kilometres above sea level, with large particles penetrating to lower layers of the atmosphere.

8. With each thermal fission of U-235 releasing an average of 2.5 fresh neutrons, it should be possible to establish a chain reaction, leading to the rapid consumption of all the fissile material, with the evolution of great amounts of energy.

9. With the colour of the fluorescent light being entirely dependent on the nature of the powder coating², it is evident that

¹ glow — зд. гореть
² coating — покрытие

coloured light can be produced in a variety of shades by using a suitable powder or mixture of powders.

В. Глагол-сказуемое в страдательном залоге

1. The acceleration of a falling object is affected¹ by air resistance.
2. The discovery of the double nature of electrons was followed by a change in the quantum theory.
3. Solar corpuscular radiation, being electrically charged, is influenced by the Earth's magnetic field.
4. The introduction of a new theory is always followed by a period of extended testing.
5. The magnitude of this effect is also affected by the strength of any electric field that happens to be present.
6. The problems of circuits will be dealt with from the point of view of radar engineering rather than radio communication.
7. The subject of neutralization has been approached with great care.
8. These questions were answered in a series of investigations, both experimental and theoretical.
9. The quantum theory was given a new form called wave mechanics.
10. Visible bodies are not the only objects attracted to the Earth or other heavenly bodies: individual molecules of gases are similarly affected.
11. On September 28, 1961, a solar flare occurred which was followed about 46 hours later by a magnetic storm and a decrease in galactic cosmic-ray intensity as observed by a neutron monitor on the ground.
12. As already stated, the scanning process described above can deal with only one small picture element at a time, and in order to create the illusion of a real, continuous and whole image, another feature of the human eye, retention of vision², is relied upon.
13. Because the techniques employed in the production of pulses are closely bound up with the current and voltage variations in circuits containing capacitors, this matter has been dealt with extensively in the earlier part of the chapter.
14. Infra-red radiation forms a part of that series of radiation which is given the general name of "electromagnetic radiation".

¹ affect — воздействовать

² retention of vision — задерживающая способность глаза

Лексические упражнения

10. Переведите сочетания существительного с прилагательным.

Помните, что выбор перевода прилагательного зависит от лексического значения существительного, к которому оно относится. В случае затруднения рекомендуется временно обойти прилагательное, перевести сначала существительное, а затем — прилагательное (§ 112).

solid particles	careful man
solid argument	careful observation
solid book	careful work
strong man	fine weather
strong forces	fine wire
strong paper	fine edge
strong magnetic field	fine sand

11. Переведите группы слов, состоящие из существительного и его правого определения.

Помните, что выбор перевода существительного зависит от его правого определения (§ 111).

Образец:

the **advance** of science — *прогресс* науки
the **advance** of troops — *продвижение* войск

1. The development of science...
The development of new methods...
The development of new devices...
2. The performance of a plane...
The performance of a task...
3. The stroke of a piston...
The stroke of a clock...
4. The treatment of a problem...
The treatment of a metal...
The treatment of deseases...

12. Переведите группы слов, в которых наречия **much**, **far** и **well** стоят перед другим наречием, предлогом или прилагательным в сравнительной степени.

Заметьте, что в таком положении эти наречия имеют усиленительное значение и переводятся словами «гораздо», «намного».

Образец:

The weight of the instrument is **well** under 10 gr.
Прибор весит *намного* меньше 10 граммов.

1. The altitudes were **well** above 200 miles...
2. The speeds are **well** over 500 mph...
3. This device was invented **well** after the invention of the radio...
4. The cockpit must be **well** forward...

5. Much longer flights were made...
6. Much more complicated problems must be solved...
7. Uranium disintegrates much more rapidly...
8. These particles move much more quickly...
9. Far greater advantages were achieved...
10. Far more difficult tasks were faced...
11. Far heavier loads could be lifted...
12. This was far beyond the ability of a single scientist...
13. Energy far beyond the capacity of present propulsion devices was...

13. Переведите предложения, обращая внимание на перевод прилагательного **inherent** (4,15) и наречия **inherently**.

Заметьте, что иногда при переводе сочетания **inherent + существительное** следует изменить порядок слов или ввести пояснительные слова.

Образец:

A high **Inherent** reliability...

Высокая надежность, *присущая* (ему, ей)...

1. The thermoelectric systems have no moving parts, hence a very high **inherent** reliability.
2. The planets have no **inherent** luminosity; they **shine**¹ by reflecting the light of the sun.
3. The **inherent** simplicity, size and reliability of centrifugal pumps make them ideally suited for compact space turbomachinery applications.
4. These considerations show that the heaviest nuclei should be **inherently** stable.
5. As the Universe is so vast, it seems **inherently** improbable that one small Earth can be the only home of life.
6. Of the many classes of future space missions under study, a few are **inherently** well suited to the operational advantages of reactor power systems.

14. Переведите предложения, обращая внимание на то, что глагол **to tend** (4,19) во многих случаях переводится словами «иметь тенденцию», «обычно».

1. The protons in the nucleus **tend** to repel one another.
2. The method of question and answer **tends** to focus attention on particular points.
3. As has already been seen, temperature **tends** to decrease with altitude when flying in the troposphere.

15. Переведите предложения, содержащие слова одного словообразовательного ряда.

specify v, specific a, specification n (4, 9)

1. At an early stage in a design project for a given reactor, it is necessary to **specify** the type of fuel to be used.

¹ **shine** — светить

2. Specific thrust is the thrust obtained per unit mass of propellant per second.

3. Experimental developments may be expected to result in significantly different technical developments, each serving a specific purpose.

4. Receiver sensitivity measurements are made to determine whether or not the receiver is performing according to the required sensitivity specifications.

enter *v*, entry *n*, re-entry *n*, re-enter *v* (4, 21)

5. When a neutron enters a nucleus, the new or compound nucleus gains an energy called the binding energy of the neutron.

6. According to Einstein's mass-energy hypothesis, the weight of the material entering into reaction is not exactly equal to the weight of the products formed.

7. We shall assume that the escape from the circular orbits and the entry into it are achieved by simple impulsive thrusts.

8. The re-entry trajectory of «Vostok» was chosen¹ so that deceleration load on entering the dense layers of the atmosphere was no greater than the loads permissible for men.

9. The air after being drawn through the tunnel flows around the outside of the tunnel to re-enter the inlet of the tunnel.

promise *v*, promise *n*, promising *a* (4, 35)

10. Nuclear propulsion systems of high thrust-to-weight ratio promise significant increases in performance over current chemical systems.

11. In the field of scientific investigations miniaturization offers great promise.

12. The solar energy as a source of energy for propulsion of space vehicles is a most promising source.

appreciate *v*, appreciation *n*, appreciable *a*, appreciably *adv* (4, 23)

13. The first person to fully appreciate the potentiality of the rocket was K. E. Tsiolkovsky.

14. It is difficult for us to appreciate just what Galileo's discoveries meant in those dark days of Middle Ages.

15. In order to gain appreciation for the sort of accuracies needed in space travel guidance problems, consider the following examples.

16. Alpha particles were found to penetrate deeply within an atom without undergoing any appreciable deflection.

17. Magnesium alloys² are appreciably lighter than aluminum.

¹ choose — выбирать

² alloy — сплав

propel v, propulsion n, propellant n, propulsive a (4, 32)

18. There is no other power unit besides rockets that can **propel** a missile so rapidly at great heights.

19. The rocket motor is a form of reaction **propulsion** in which all **propellants** which form the **propulsive** jet are carried along¹ with the vehicle being **propelled**.

20. In 1903 K. E. Tsiolkovsky described a streamlined rocket-driven vehicle for space travel which used liquid oxygen and hydrogen as **propellants**.

16. Переведите предложения, содержащие многозначные глаголы. После перевода предложений повторите еще раз их значения.

leave (4, 22)

1. The space pilot can perform all the necessary operations connected with observation, communication with the Earth and flight control without **leaving** his seat.

2. Imagine a rocket **leaving** the surface of the Earth with such a velocity.

3. At the free surface of a liquid, there is a continual interchange of molecules **leaving** the liquid and molecules entering the liquid.

4. The electrons are sufficient in number to neutralize the charge on the nucleus, **leaving** the atom uncharged as a whole.

5. Exhaust velocity is the velocity with which a combustion gas **leaves** the throat of a rocket motor.

suffer (4,27)

6. The propeller **suffers** the loss of efficiency as speeds rise above about 450 mph.

7. The planet Jupiter has several satellites whose orbits are so nearly in the plane of the planets' orbit that they pass through the shadow of the planet and **suffer** **eclipse**² at every revolution.

8. These rockets are able to reach altitudes of more than 50 miles, but they **suffer** from the fact that their time of flight is limited.

lead (4,30)

9. Our Research Centre **leads** the entire work on measuring cosmic ray intensity.

10. The processes involved with the change in the structure of a nucleus frequently **lead** to the direct conversion of mass to energy or energy to mass.

11. Simple considerations **lead** us to expect that the heaviest nuclei should be inherently stable.

¹ carry along — нести

² eclipse — затмение

17. Переведите предложения, содержащие прилагательное **available** (4,24) «имеющийся», «доступный», «полученный», сочетание **to be available** «иметься», «получаться» и существительное **availability** « наличие», «доступность».

Запомните, что слово **available** не переводится в некоторых случаях совсем (предложения 4 и 5).

1. The total work depends on the amount of **available** energy.
2. Observations **available** to the first satellites included the Earth's magnetic field, cosmic radiation, solar radiation and ionization.
3. The energy **available** from fission of U-235 is about 10^7 times that of chemical reaction of an equal mass of any combustible mixture.
4. There are many other precise measuring instruments **available** that are not listed here.
5. There are several **available** books dealing with the current use of rockets for high-altitude research.
6. The greater the pressure drop, as the gas leaves the rocket, the more energy is **available** to move the rocket forward.
7. From some sources only a limited amount of energy is **available**.
8. With the **availability** of microwave sources having directly determined frequencies, the determination of the velocity of electromagnetic waves will become a standard laboratory experiment.
9. Rocket engines either burn fuel that contains the oxygen needed for its combustion or they carry their own supply of oxygen, so they do not depend on the **availability** of oxygen from the atmosphere.
10. The **availability** of nuclear energy is a scientific advance of recent years.

18. Переведите предложения, обращая внимание на многозначность выделенных существительных, и укажите значения каждого из них.

item (4,26)

1. Every item of equipment carried aboard the missile possesses weight and occupies space which has to be considered in designing the missile.
2. Several main items which make up a complete power unit are illustrated in Fig. 51.
3. Another item to analyse from a space station is meteoritic dust¹ distribution.

impact (4,36)

4. X-rays radiate from the place of **impact** wherever that may be.
5. Brownian movement is the motion of very small particles under the **impact** of gas or liquid molecules.

¹ meteoritic dust — метеоритная пыль

6. Astronautics is found to have an important impact on education.

7. During the boost stage, when the powerful rocket motors were working and major Gagarin felt the full impact of the high loads, vibration and noise, he continuously reported all the necessary information.

technique (4,37)

8. Although the ascent technique used by this vehicle is essentially the same as in other vehicles, there are significant differences in the method of utilizing the booster.

9. Meteorites found on the surface of the Earth have been analysed by chemical, physical, metallurgical and nuclear techniques.

10. The varied types of missiles and space projects demand the use of different techniques.

scale (4,40)

11. Two scales in common use to-day are the Fahrenheit and Centigrade.

12. During the I. G. Y. (International Geophysical Year) scientists from sixty nations studied the surface of the Earth, on a scale never before possible.

19. Переведите предложения, содержащие близкие по значению прилагательные.

current (4,29), present

1. After an introductory summary¹ of current ideas on atomic structure, X-rays and radioactivity are discussed from an experimental standpoint.

2. The atomic character of matter belongs to the most certain facts of our present knowledge.

20. Переведите предложения, обращая внимание на перевод слова so (4,34) и словосочетаний с ним.

1. The first man who left the ground and really ascended into the air did so by the lift of hot air enclosed in a paper bag.

2. In order to circle the Earth, and so remain in a permanent orbit, a rocket must attain a speed of 18,000 mph.

3. At the time of the First International Polar Year (1882—1883) the existence of the ionosphere was not definitely established, so there were no ionospheric measurements in the program.

4. During the first stage of the take-off it is usual to keep the tail of the airplane up so as to reduce the drag.

5. A curved surface may be placed in a stream of air so that the air meets the surface tangentially but is gradually deflected so that the air leaves the surface in a direction different from its original position.

¹ summary — краткое изложение

6. So far we have assumed that nuclei are spherically symmetrical.

7. The plane will continue its flight so long as the fuel lasts.

8. Avogadro advanced an idea that gaseous elements were organized into molecules, so that a molecule of hydrogen consisted of a union of two hydrogen atoms, a molecule of oxygen — of a union of two oxygen atoms, and so on.

9. Our Milky Way system has 100 billion or so stars.

21. Повторение. Переведите предложения, обращая внимание на перевод слов outset, lack, failure, view, succession, evidence, domain, assumption.

1. We have to realize from the very outset that the rocket is not a new invention.

2. The neutrons because of their lack of charge, readily penetrate other nuclei.

3. A pound of excessive weight for a satellite may lead to a complete failure.

4. One television camera transmitted a full-face view of the cosmonaut and the other a side-view of him.

5. One scene followed the other in rapid succession.

6. Having collected all the experimental evidence, the scientists concluded that the velocity of light was $2.99773 \pm 0.00001 \times 10^{10}$ centimetres per second.

7. We know that the entry into any new domain results in new discoveries which often cannot be predicted.

8. Plank found that he could derive a mathematical formula by making an assumption that a body cannot radiate energy continuously.

Упражнения на перевод терминов

22. Переведите термины, состоящие из существительного и определения, выраженного двумя существительными, соединенными предлогами.

А. Термины с предлогом to

surface-to-air missile

ракета класса «земля — воздух»

Английский термин	Область применения
air-to-ground television system	телевидение
underwater-to-air missile	ракетная техника
antenna-to-grid circuit	радио
signal-to-noise ratio	»
air-to-air action	авиация
surface-to-surface missile	ракетная техника
fuel-to-moderator ratio	ядерная физика
pulse-to-pulse correlation	телевидение
point-to-point communication	радио
pick-to-pick current	телевидение

Б. Термины с предлогом of

rate-of-climb indicator
индикатор скорости набора высоты

Английский термин	Область применения
velocity-of-propagation	радио
rate-of-turn gyroscope	авиация
line-of-sight distance	радио
figure-of-noise	»

В. Термины с предлогом by

layer-by-layer winding
обмотка «слой за слоем» (обмотка равными слоями)

Английский термин	Область применения
step-by-step method	математика
step-by-step switch	радиоэлектроника
point-by-point computation	вычислительная техника

23. Переведите термины, вторым компонентом которых являются прилагательные *free* и *tight*.

Заметьте, что *free* в этом случае имеет значение «без» (свободный от), а *tight* — «непроницаемый» (плотный).

accident-free
 ↓
 от чего? ← свободный
 ↓
 от аварий
 безаварийный

Английский термин	Область применения
error-free operation	автоматика
gravity-free flight	космонавтика
drift-free amplifier	радиоэлектроника
friction-free movement	детали машин
air-free space	приборы
noise-free operation	радиоэлектроника
watertight capsule	космонавтика
airtight cabin	авиация
vapour-tight chamber	двигатели

Упражнения в чтении

24. Прочтайте следующие существительные с суффиксами *-tion* и *-ity* и прилагательные с суффиксами *-ic* и *-ive* (*-ative*), соблюдая правильное ударение:

limi'tation, appli'cation, dissoci'ation, con'sumption, com'bustion, com'pression, 'mission, compe'tition, pro'pulsion, distri'bution, ca'pacity, e'quality, in'tensity, sim'plicity, re/lia'bility, capa'bi-
lity, a, vaila'bility, ,hyperve'locity
peri'odic, i'onic, ki'netic, 'scien'tific, spe'cific.
ef'fective, pro'tective, ex'plosive, suc'cessive, ex'tensive, com'pe-
titive, 'relative, in'dicative

25. Прочтайте следующие группы существительного, содержащие определение, выраженное сложным прилагательным, соблюдая при этом правильное ударение:

'air-'breathing 'engine
'rocket-pro'pelled 'missile
'high-'speed 'passenger-'carrying 'airplane
'rotor 'tip-'drive 'unit
'rocket-'powered 'vehicle
'vehicle-trans'ported pro'pellant

26. Прочтайте следующие слова из основного текста:

breathe [bri:θ]	appreciably [ə'pri:ʃəblɪ]
introduce [int्रe'dju:s]	significant [sig'nifikənt]
jettison [dʒetɪsn]	revival [rɪ'veɪvəl]
inherent [in'hɪərənt]	promising [prə'miːsɪŋ]
overall [ou'verɔ:l]	impact [im'pækt]

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. NOISE¹. THE THEORETICAL LIMIT TO MEASUREMENT

(Для перевода без словаря)

Imagine that the attempt is made to detect and measure an extremely small electric current by means of a sensitive moving-coil galvanometer. By taking various precautions² the galvanometer in question may be made so sensitive that an appreciable movement of the coil³ is seen when a current of the order of 10^{-12} A flows in it. Such an instrument can detect such current, but it is found impossible to measure the current accurately because the zero⁴ of the instrument continually varies. This variation may be shown to be inherent in the galvanometer itself and not to be due to any accidental⁵ movement of the supports. These variations of the zero are due to the thermal movements of the ions and electrons constituting the wire of the coil.

No advantage is gained by making a more sensitive instrument. Greater sensitivity increases the effects due to the thermal movements of the electrons in the same ratio as the effect due to the current to be measured. The theoretical limit to the measurement of current by this type of galvanometer has been reached. Since the movement of the coil due to the thermal movements of the electrons is an unwanted effect masking the effect of the signal to be measured, it is called "noise." The most fundamental form of noise, common to all forms of detecting and measuring apparatus is what is called "thermal noise," and an example of this has just been considered in the case of the sensitive galvanometer.

¹ noise — шум

² precautions — меры предосторожности

³ coil — катушка

⁴ zero — нуль

⁵ accidental — случайный

2. FUNCTIONAL PARTS OF A GUIDED WEAPON SYSTEM

(Для перевода со словарем)

The guided missile itself is only one part of the guided weapon system. In all cases the system will comprise the following three parts:

(I) Equipment for locating and tracking the target. This equipment may be a radar one in the case of surface-to-air guided weapons or may be visual in the case of a short-range antitank missile.

(II) Guidance equipment, the purpose of which is to detect where the missile is relative to the target and produce the necessary instructions for steering the missile towards the target.

(III) The missile itself, which is provided with the necessary steering equipment so that by making use of the guidance signals it can steer itself towards the target.

The distinctive part of any guided weapon system is the method of guidance that is used. The four methods together with their subdivisions are:

I. Beam Riding¹.

Here the tracking equipment in use maintains a beam of radiation on the target, and a guidance equipment is carried in the missile which is capable of detecting the error between the missile and the centre of the beam. The missile uses this information to steer it towards the beam centre so that finally the missile is riding along the axis of the beam, which is itself remaining on the target. The missile follows a curved course, as shown in Fig. 1.

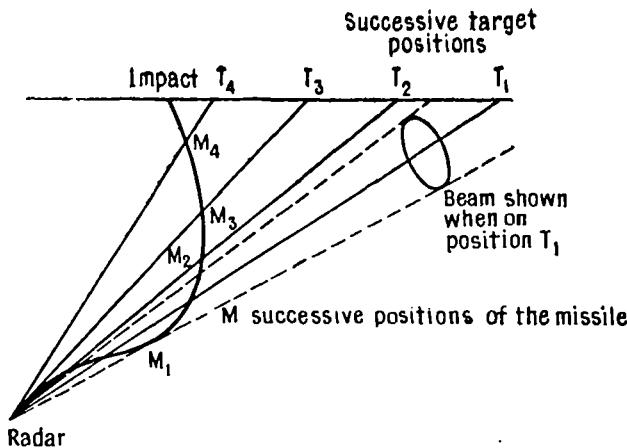


Fig. 1. Beam riding.

II. Command Guidance.

The tracking equipment follows the target as before. A second equipment continuously tracks the missile. A third equipment, a computer, works out at each instant the correct steering signals for the missile in order to head it towards the target successfully. A command link then sends the correct commands to the missile to enable the control surfaces to be correctly operated. See Fig. 2.

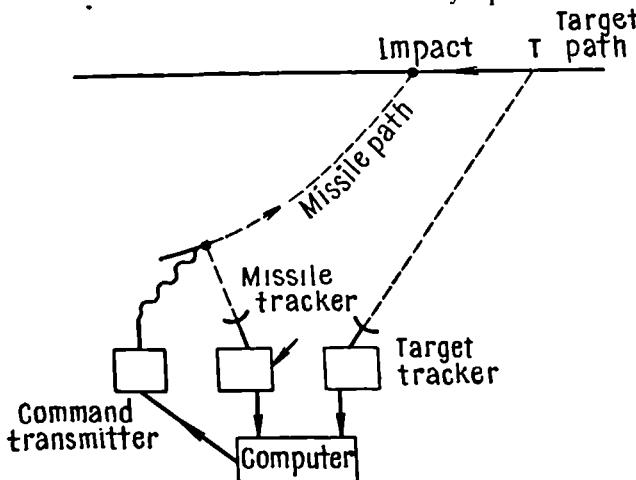


Fig. 2. Command guidance.

III. Homing Guidance ².

In this case target-tracking equipment is carried in the missile itself. For example, a miniature radar equipment carried in the missile continuously tracks the target, and, from this information a computer in the missile calculates the necessary signals so as to steer the missile to interception (Fig. 3).

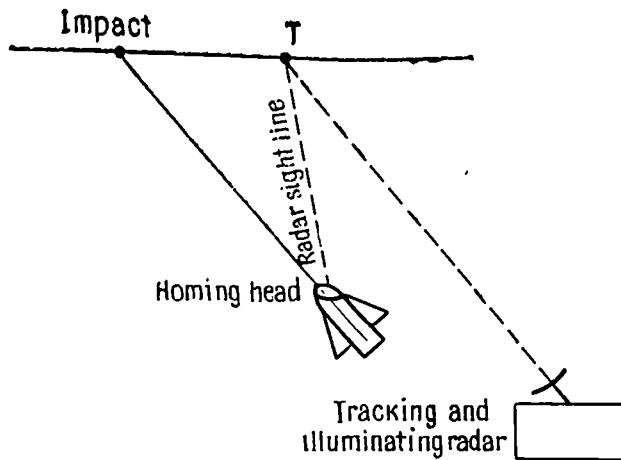


Fig. 3. Semi-active homing.

There are three subdivisions:

- ACTIVE HOMING. In this case the missile itself radiates energy in order to light up the target in order to track it.
- SEMI-ACTIVE HOMING. In this case a tracking equipment on the ground illuminates the target continuously.
- PASSIVE HOMING. In this case the missile relies on energy radiated by the target itself, such as heat coming from the engines of an aircraft or a ship, or the target's own radio signals.

IV. Inertia Navigation³.

The system is similar to the navigation of a ship by dead-reckoning⁴. In the latter case the navigator, knowing the latitude and longitude of his starting-point and that of his destination, computes the course that he must steer and the distance. Then, by using information about his actual course obtained from the ship's compass and information about the distance gone, the navigator can mark off on his chart his calculated position without using any information from outside the ship. From this calculated position he can compute his new course to his destination. In a similar manner, a missile can be provided with an inertial navigation system which carried out a dead-reckoning calculation continuously in all three dimensions.

¹ beam riding — наведение по лучу

² homing guidance — самонаведение

³ inertia navigation — инерциальное наведение

⁴ dead-reckoning — счисление пути

3. SPACE POWER SYSTEMS

(Для перевода со словарем)

Many problems still remain to be solved before interplanetary space exploration becomes a reality. One problem is the development of efficient, low-weight electric power units to drive sub-systems of space vehicles.

There are many types of indirect and direct conversion units for generation of electric power.

Developments in fuel cells, solar cells and other space power sources are known as outstanding examples of astronautical progress. However, there are indications that real progress has only just begun. Recently it was noted that vastly greater amounts of electrical energy will be needed in manned space vehicles and this calls for design improvements which are now entirely out of reach.

Future high-power solar cell systems probably will use concentrating devices to increase illumination on the solar-cell surface and decrease overall system weight and cost.

A major breakthrough is required in achieving high-system efficiency before fuel-cell systems will be competitive with other thermal or direct conversion mechanisms.

Space power systems are that particular branch of astronautics which relies on a number of different scientific and technological disciplines, each contributing to the other in an essential way.

For instance, it has become increasingly clear that vastly improved high-temperature materials are essential before any breakthroughs can be achieved while improved design efficiencies require weight reduction. Both problems fall in the domain of the solid-state physicist and the materials engineer. A related problem is that of heat rejection in space and how to take away unusable heat at low temperature in an air-free and gravity-free environment.

Many people now take part in research in these fields. Physicists, physical-chemists, solid-state technicians and engineering-physicists are likely to be attracted to these new activities in what is certainly one of the fastest-growing fields in the entire space business.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как найти основное слово группы существительного (combustion chamber pressures in liquid rocket engines vary...; passenger-carrying airplane having...; the combustion chamber that...; the propulsion unit imaginable...) (§ 83)?

2. В какой последовательности следует переводить группу существительного с левыми определениями (§ 84)?

3. На какие вопросы могут отвечать при переводе слова, стоящие слева от основного слова (the gas-filled free balloon; passenger-carrying aircraft, fast-operating device)?

4. Какое место по отношению к основному слову может занимать прилагательное, выполняющее функцию определения (the radar tracking system available; available information)?

5. Укажите возможные способы перевода прилагательного, выполняющего функцию правого определения (§ 89).

6. Укажите способ перевода существительного с предлогом, выполняющего функцию правого определения (in use; under consideration; in question) (§ 90).

7. В чем особенность перевода приложения на русский язык (§ 91)?

8. Какие значения может иметь служебное слово since (упр. 8)?

УРОК ПЯТЫЙ

Текст: The Colour Spectrum.

Грамматические основы перевода

Сослагательное наклонение (§ 34—39). Бессоюзное условное предложение (§ 40). Различные случаи употребления глаголов **should** и **would** (§ 41, 42).

These — как заменитель существительного (упр. 9).

Различные значения служебных слов **because** и **because of** (упр. 10).

Лексические основы перевода

Перевод существительного с использованием языковой догадки (§ 11!).

Перевод слов: **yield, identify, occur, estimate, reveal, background, inner, outer, upper, outermost, uppermost, innermost, draw, throughout.**

Перевод словосочетаний: **to be familiar, in (with) respect to, со словами** **matter** **и** **but** **и** **типа is characteristic of** (упр. 13).

Перевод слов с префиксами **over-, under-** (упр. 25).

Перевод терминов типа «**self + причастие (I или II)**» и терминов, первым компонентом которых является слово **direct** (упр. 26, 27).

ТЕКСТ

THE COLOUR SPECTRUM

Light brings us the news of the Universe. Coming to us from the Sun and the stars¹ it tells us of their existence, their position, their movements, their constitutions and other matters² of interest.

The first step in the acquirement³ of this knowledge is made when we use a prism to analyse the light. In every case we observe a continuous spectrum of colours running from red to violet in the order⁴ of the colours of the rainbow.

By a closer observation of the spectrum, however, we find that the spectrum is crossed by an immense⁵ number⁶ of fine⁷ dark lines, amounting to many thousands. To each of these lines there corresponds a definite wavelength and a definite intensity⁸. The explanation of the phenomenon can be based on absorption of radiation. When in the laboratory, a substance is vapourized⁹ and made luminous¹⁰, the light it emits appears as a collection of iso-

lated lines and is characteristic of the substance. No two substances yield¹¹ the same line spectrum and consequently the chemical nature of substances can be determined spectroscopically. Thus glowing¹² atomic hydrogen is characterized by a bright line in the red and since it is exhibited¹³ by nothing but¹⁴ hydrogen, it serves to disclose the presence of atomic hydrogen wherever it occurs¹⁵.

When a beam of light which, if analised, would form a continuous spectrum, passes through a less brightly glowing vapour, which, acting alone, would give a line spectrum, the spectrum formed consists of a continuous background¹⁶ on which dark lines appear exactly in the positions of the bright lines which the interposed¹⁷ vapour would give by itself. The glowing vapour absorbs, from the light passing through it, precisely those colours which it can itself emit.

When we investigate the dark lines in the spectrum of the Sun, we find that these correspond line by line to the spectra emitted in the laboratory by various elements, iron¹⁸, calcium, hydrogen etc., brought to the conditions of luminous gases.

From this it follows that the light from the Sun must have gone through clouds¹⁹ of these atoms somewhere and in respect to²⁰ such substances as iron or calcium, or most other elements, this must have happened on the Sun because there is no other part of the path of the light where substances can be brought to the state of a luminous gas.

The radiation emitted by the Sun would have given a complete spectrum were it not that on its way to us it has passed through an atmosphere surrounding²¹ the Sun and containing the various elements in the form of gases. These gases themselves must be luminous and be emitting light of the very frequencies which we suppose them to have been absorbing and therefore causing black lines to appear in the spectrum.

The hot interior of the Sun would have given a complete spectrum but the cooler outer²² layers absorb the radiations of various wavelengths, thus producing the dark lines. These prove conclusively²³ that the elements that are found on the Earth are found also in the Sun and stars.

We can use the relative intensities of the lines due to different elements to obtain some fairly²⁴ reliable conclusions about the abundance²⁵ of each element. If, for instance, we were to double²⁶ the amount of one element in the Sun, leaving the amounts of the other elements unaltered, we should find that the intensities of the lines of the particular element would be relatively strengthened. It is by means of such considerations that we can determine the relative abundance of this or of that element in the Sun or in a remote star.

We can, moreover²⁷, not only identify²⁸ the chemical elements in the atmosphere of the Sun and the stars but draw²⁹ conclusions concerning the temperature in their atmospheres. Astronomical

spectra represent conditions which range in temperature from a few degrees above absolute zero to 100,000° or even more in the atmospheres of the hottest stars. For the Sun the central temperature is estimated³⁰ to be of the order of 20,000,000° C.

Of all the results of stellar spectroscopy, however, the most interesting is the uniformity of distribution of the chemical elements throughout³¹ the Universe. It must have been a revelation³² to the earlier astronomers when they discovered in the Sun the same familiar³³ substances — hydrogen, iron, calcium and the rest³⁴ — which they knew on the Earth. Their belief in the uniformity of the chemical elements must have been strengthened when several mysterious spectral lines turned out³⁵ to be produced by the newly discovered gas, helium. The principle of uniformity of chemical elements means that the atomic building blocks of the Universe are the same throughout space.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите сложные предложения, в которых глагол-сказуемое стоит в форме сослагательного наклонения.

Заметьте, что сослагательное наклонение употребляется: в придаточных предложениях после предложений типа *it is necessary* (образец А.); в придаточных предложениях, если в главном предложении имеется глагол или отлагольное существительное со значением «требовать, предлагать, желать» (образец В.); в предложениях с союзом *if* и *as if* (образец С.). При переводе форму сослагательного наклонения передайте формой глагола прошедшего времени с частицей «бы». Обратите внимание на то, что частица «бы» может присоединяться к союзу.

Образцы:

A. ***It is essential that he should inform us...***

Необходимо, чтобы он *информировал нас...*

B. ***It is required that an aircraft engine function properly...***

Требуется, чтобы двигатель самолета *работал безотказно...*

C. ***If there were no frictional losses, a machine would be 100% efficient.***

Если бы не было потерь на трение, коэффициент полезного действия машины был бы равен 100%.

A. 1. ***It is necessary that the aircraft engine should combine efficiency and lightness.***

2. ***It is highly desirable that physicists should solve the problem of control of dangerous radiations before we can widely use atomic energy.***

3. ***It is essential in the application of the turbojet engine to the propulsion of missiles that the thrust per unit of frontal area be as large as possible.***

4. ***It is important that the propellant remain liquid at the lowest temperature.***

5. It is necessary that an aircraft engine **function** properly at a wide range of speeds, atmospheric conditions and altitudes.
6. To maintain an aircraft hydraulic system in good order it is essential that a means of operation on the ground be provided.
7. It is highly desirable that a person operating an aircraft have a good knowledge of the functions of engine controls and instruments.

B. 1. It is required that all research instruments be light and compact.

2. Much of to-day's scientific research requires the solving of difficult mathematical problems, some of which **would require** years to solve by the usual methods.
3. We wish Tsiolkovsky's ideas **were** put into practice.
4. The demand is that all measurements **should be made** very accurately.
5. The fundamental principle of generator action requires that lines of force **be cut** by wires.
6. He suggested that the experiment with liquid fuel rockets **should be** continued.

C. 1. If there **were** no friction we **could not even walk**.

2. The Earth behaves as if it **were** a large magnet.
3. Our understanding of the nature of airflow **would be** much easier if the flow **could be seen**.
4. If there **were** no frictional losses in a machine, we **could get** as much work out of it as we put into it.
5. It **would be** much easier to compute satellite orbits if the Earth **were** perfectly spherical and **had no atmosphere**.
6. If one **burnt** 1 lb. of fuel and all the heat produced **were used** in heating water, it **would be possible** to increase the temperature of about $8\frac{1}{2}$ tons of water by 1° Fahrenheit.
7. If the Earth's axis **were** perpendicular to the plane of its orbit, all parts of the world **would have** about 12 hours of daylight and 12 hours of darkness **every day of the year**.
8. If one **could gather** all the parts of an exploding atom, their total weight **would be** slightly less than the weight of the original atom.
9. In many cases air may be treated as if it **were** an ideal fluid.

2. Переведите предложения.

Заметьте, что форма сослагательного наклонения, образованная с глаголом **would**, может употребляться без дополнительного лексического указания на предположение. При переводе, исходя из смысла предложения, употребите один из указанных в образце способов перевода данной формы сослагательного наклонения.

Образец:

The rocket **would leave** the Earth...

Ракета **оторвалась бы** от Земли...

Ракета, **вероятно, оторвется** от Земли...

1. Without the force of gravitation there would be no pressure in liquids.

2. The Sun radiates as much energy every second as would be released by the explosion of several billion atomic bombs.

3. A body leaving the Earth in the direction of the Moon would experience the gravitational field of both planets.

4. By reduction in jet velocity it would appear to be possible to increase the propulsive efficiency for a given rocket.

5. Uranium is a very rich power-producer: the atomic power plant uses 30 grammes of uranium in 24 hours where a thermal power plant of the same capacity of 5,000 kwh would require as much as 100 tons of coal.

6. The problem of maintaining a store of liquid hydrogen in an orbiting satellite would appear to be relatively simple.

7. The transfer of liquid hydrogen from the earth's surface to orbit would be rather more difficult.

3. Переведите предложения. Укажите в английском предложении сказуемое, выраженное глаголом в сослагательном наклонении (§ 37).

1. It is not essential that the stages in a step rocket be of increasing size.

2. If the bar magnet were broken in two, it would still retain its magnetism.

3. It should be understood that these diagrams have been calculated for a particular case. Other cases would give different results.

4. We all realize that if it were not for the friction between our shoes and the floor, we could not walk.

5. The scientific objectives may require that a space vehicle should maintain a fixed aspect¹ with respect to the Earth, the Sun, the fixed stars or even to a particular star.

6. If the Earth neither rotated nor revolved, one side would always have day and the other side would always have night.

7. In some calculations the air is treated as if it had no viscosity.

8. If the conductor had been moved slowly, the galvanometer deflection would have been smaller.

9. We have seen that electrons in crystals have wave properties as if they were in free space.

10. It is desirable that such power sources (nuclear batteries) should be ideally suited for a number of present-day applications that require power in remote places.

¹ aspect — положение

11. The whole weight of a body acts as though it were concentrated at a single point, this point being called the centre of gravity.

12. The accuracy of launch velocity required for an orbit round the Moon is higher than might at first be supposed.

13. It is theoretically possible that a part of the nuclear energy might be liberated by transforming either the lightest or the heaviest of the elements into others of medium¹ weight.

14. Without the Sun there would be no light, no heat, no energy of any kind.

15. Neutrons do not occur in nature and if they did, we could not accelerate them since they carry no electric charge.

16. It is necessary that the plates of a condenser be well insulated from one another.

17. According to the law of gravitation, the force of gravity between the Earth and the Moon would be twice as great as it is, if the Moon were twice as massive as it is.

18. Without sunlight there would be no photosynthesis.

19. In the early twenties the suggestion that pictures could be transmitted even by wire, would have seemed fantastic to many people.

20. Life could not exist on the Earth but for the heat and light which it receives from the Sun.

21. Since the information from the probe² which passed Venus had to be sent back no less than 36,000,000 miles to the Earth the achievement would have been regarded as impossible if it had not in fact occurred.

22. Ideally, the consumption of fuel would be minimized if the solar orbit of the vehicle were a transfer ellipse tangential to the Earth's orbit and that of the planet, the Earth and planet being on opposite sides of the Sun.

23. The solar constant is the quantity of energy, measured in calories, which would fall in one minute on an area of one square centimetre at the Earth's surface placed perpendicularly to the radiation, if the Earth had no atmosphere and was at its mean³ distance from the Sun.

24. The amount of gravitational energy which would have been released by the contraction⁴ of the Sun, for example, from an indefinitely great size to its present dimensions is readily calculable, and is found to amount to as much as would supply the present rate of radiation from the surface for 46,000,000 years.

¹ medium — средний

² probe — ракета

³ mean — средний

⁴ contraction — сжатие

4. Переведите предложения, в которых сказуемое стоит в форме сослагательного наклонения, образованной с модальными глаголами *may*, *might*, *could*.
Запомните, что в этом случае модальные глаголы часто сохраняют свое значение и переводятся словами «мог бы».

Образец:

In order that the rocket **may** leave the Earth...

Для того чтобы ракета **могла оторваться** от Земли...

1. A space platform **might** be useful as a navigational aid.
2. In order that we **may** be able to find out how efficient the engine is, we must measure the amount of energy that we put into it and compare this with the energy that it produces.
3. Studies of the atmosphere show that temperature does not decrease as **might** have been expected.
4. In order that the rocket **may** ascend upward against the attraction of gravity, the force of propulsion must exceed the weight of the rocket.
5. The space station **might** be a way-station on the road to the other planets, and a rocket reaching it **could** fuel up again and continue its flight.
6. No useful satellites **could** have been launched without the development of the modern science and technology of electronics to provide the necessary guidance, control, and communications.

5. Переведите предложения.

Заметьте, что глаголы *must* и *may* перед перфектным инфинитивом выражают предположение и переводятся словами «вероятно», «по-видимому», «должно быть». Перфектная форма инфинитива означает, что действие относится к прошедшему времени.

Образец:

The temperature in the container **must** have been very high.

Температура в контейнере, **вероятно**, была очень высокой.

1. Originally the Earth's temperature **must** have been extremely high.
2. The planetoids **may** have been formed by the disintegration of a planet.
3. Mercury **must** have lost most of its atmosphere while it was still hot.
4. Though, at the present time, Mercury could hold an atmosphere composed of the heavier gases, the atmosphere **must** have escaped entirely if Mercury had remained very hot for any length of time after its formation.
5. In the early stages of the Moon's history the rate of escape of atmosphere **must** have been very rapid.

6. Переведите предложения, содержащие в составе сказуемого глагол should.

Заметьте, что **should** может иметь модальное значение и переводиться словами «следует», «должен» (образец 1), или служить для образования сослагательного наклонения (образец 2).

Образцы:

1. The reaction **should take place...**

Реакция должна произойти...

2. If the body **should move**, friction would develop.

Если бы тело двигалось, возникло бы трение.

1. If the temperature of the liquid **should be raised**, a large supply of more swiftly moving molecules is provided.

2. Obviously a flying machine **should be** stable.

3. It is necessary that fuel lines **should be** protected against heat.

4. The thermonuclear reaction **should not be** confused with the nuclear reaction such as takes place in the atom bomb.

5. It **should be** noted that a multiple-step rocket always has a greater take-off mass than a single-step rocket.

6. A molecule of water is the smallest possible particle of water. If we **should divide** the molecule we no longer have water.

7. It is required that an airplane engine **should be** well balanced dynamically and be as free from vibration as possible at all operating speeds.

8. It is desired that an engine used in an airplane **should have** the least possible fuel and oil consumption.

9. According to theoretical calculations, for a particle to produce a million electrons after travelling through the atmosphere, it **should possess** initially an energy between 10^{15} and 10^{16} ev.

7. Переведите предложения, содержащие в составе сказуемого глагол would.

Заметьте, что **would** может служить для образования сослагательного наклонения (образец 1) или относительного будущего времени (образец 2). В последнем случае **would** в сочетании с инфинитивом переводится будущим временем.

Образцы:

1. It **would be** interesting to note that...

Было бы интересно заметить, что...

2. It **was calculated** that the body **would move...**

Было подсчитано, что тело будет двигаться...

1. Heat **would be absorbed** until the temperature of the absorbing body attains that of the heat.

2. Probably the early users of telephones never dreamed that there **would be** wireless telephone.

3. It **would be** useful to remember that the greater the vacuum, the more efficient the rocket becomes.

4. If the Earth stayed in one place in its orbit, day and night would not change in length.

5. If a "short-circuit" occurs at any place in a circuit, a very large current is caused to flow, and this would heat up the connecting wires.

6. The earliest experiments in flight with heavier-than-air machines were all based upon the idea that success would be attained by imitating the motions of birds.

7. If our Sun were far enough from us, it would look like a star. On the other hand, if any of the stars were close enough to us, they would look like suns.

8. Contact with the vehicle was lost after one month, by which time it had been established that the orbit would not pass sufficiently close to Venus for capture to take place.

9. The laws of mechanics predicted that a lead¹ ball would fall to the Earth at the same rate as an iron ball.

10. A brief list of some of the obvious diagnostic techniques would include measurements of electric currents and voltages induced in the plasma, the use of high-speed photographic equipment, optical spectroscopy, etc.

8. Переведите сложные предложения, в состав которых входит бессоюзное условное предложение.

Бессоюзное условное предложение можно определить по порядку слов. На первом месте в таких предложениях стоит вспомогательный глагол *should*, *were* или *had*. Перевод предложений следует начинать словами «если бы».

Образец:

Should the engine fail, the airplane would have to make a forced landing.

Если бы двигатель вышел из строя, самолет должен был бы совершить вынужденную посадку.

1. Should the falling body stop all friction would disappear.

2. Were friction removed walking would be impossible.

3. Had the first satellite been placed into a much higher orbit, it would have been of far less use, as the point of greatest interest is the manner in which its movement is affected by drag.

4. The gondola of Explorer II stratospheric balloon was made of magnesium metal and it weighed 450 lb; had it been made of steel, the weight would have been a ton.

5. Should an electrically neutral atom attain an additional electron, the negative charges would predominate, resulting in a negative ion.

6. Were test data available the calculation of the parameters for designing a rocket motor would be made from these data.

¹ lead — свинец

9. Переведите парные предложения.

Заметьте, что местонимение *these* (заменитель существительного), если оно стоит перед сказуемым, можно перевodить местонимением «они». Исходя из смысла первого предложения, укажите, какое слово (или слова) оно заменяет.

1. On airplanes electromotive force is supplied by generators and alternators. These convert mechanical energy into electrical energy.

2. Navigation at sea and also by air still relies on the compass, which in turn depends on the form of the Earth's magnetic field and its various changes. These are known from the continuous records made at magnetic observatories.

3. Becquerel used photographic plates and an electroscope for measuring the intensity of the radioactive emissions. These are still used to-day though in somewhat different form.

4. Some of the wastes¹ from nuclear reactors include valuable radioisotopes. These are radioactive forms of elements which were made "hot" in reactors.

10. Переведите предложения, обращая внимание на то, что слово *because* — союз «так как», «потому что», а слово *because of* — предлог «из-за», «благодаря».

1. Because our sense of temperature is not very reliable temperature measurements of our body must be made with accurate thermometers.

2. The energy which an object has because of its motion is called kinetic energy.

3. The great astronomer Johannes Kepler made several most important discoveries concerning the orbits of planets which apply to the satellites of to-day, because any smaller body revolving around a larger one is a satellite.

4. Because of the relative complexity of plasma accelerator configurations, experiments are needed to determine the design of suitable plasma drive devices.

5. The problem of power generation from fusion reactors is very difficult because of the difficulty of containing plasma.

6. Because the neutron is neutral the positive charge on the nucleus does not affect it.

7. Because of the Earth's rotation, the centrifugal force developed increases the depth of the troposphere at the equator to between 9 and 11 miles.

11. Повторение. Переведите предложения, обращая внимание на перевод ге-
рундия и причастия I.

1. A mass spectrometer mounted on rockets must be exceedingly reliable, simple in operation, and must operate automatically for a long time without requiring any additional maintenance and adjustments.

¹ wastes — отходы

2. By mounting an ion mass analyzer on a satellite travelling through the ionosphere and by telemetering its readings to the Earth, we can obtain information on the ion mass spectrum.

3. Since 1962 a new launcher designed specifically for launching delicate aerodynamic models has been used at the laboratory.

4. In determining the total vehicle requirements, it is necessary to establish the nature and the effect of the various components, parameters, and material making up the total.

5. Using these methods they succeeded in increasing sensitivity of the instrument.

6. Though the analogue computer is less suitable for solving algebraic problems, it is highly efficient in solving differential equations.

7. The launching rockets have a limited amount of energy which they can deliver to the satellite at the time it is launched.

8. The problem of launching missiles from the ground may be divided into two general categories: effects of the launching phase on the missile and the effects of the missile on the launcher and the surrounding areas.

9. Increasing the proportion of fuel reduces the critical size of the reactor.

Лексические упражнения

12. Переведите предложения, обращая внимание на то, что значение выделенного существительного легко раскрывается без словаря, если опираться на значение существительного — правого определения и общий смысл предложения (§ 111).

1. Superiority in space flights belongs to the Soviet Union.

2. The choice of the propellant depends upon the type of the rocket.

3. The main feature of the neutron is lack of charge.

4. Our nearest neighbour in space is the Moon.

5. The validity of Newton's gravitational hypothesis was proved by the discovery of the planet Neptune in 1846.

6. Mass is the measure of quantity of matter in a body.

7. The capture of a slow neutron leads to the formation of compound nuclei.

13. Переведите предложения, содержащие словосочетания «to be + прилагательное + предлог». Укажите возможные варианты перевода этих словосочетаний. Обратите внимание на то, что в некоторых случаях управление данных словосочетаний не совпадает с управлением их русских соответствий.

Заметьте, что слово "characteristic" в данном словосочетании является прилагательным, а не существительным и, следовательно, это словосочетание нельзя переводить «является характеристикой», а следует переводить «является характерным», «характерно для» или «характеризует».

1. It is characteristic of the kinetic theory of heat that all its statements are of this statistical kind.

2. The transformation occurs rapidly, as is characteristic for a radioactive decay with a large energy release.
3. These are errors which are characteristic of precise measuring system.
4. Such energy is typical of a cyclotron.
5. The author's figures are not indicative of the role played by the receiving aerial as a link in the whole chain.
6. The equation 24 takes the following form, which is typical of many electrical integrating circuits.

14. Переведите предложения, содержащие слово **matter** (5,2) и словосочетания с ним.

1. Early experimentors worked without satisfactory theory to explain the structure of **matter**.
2. Cathode rays can penetrate **matter** very easily.
3. The subject **matter** of statics is to study bodies at rest.
4. The purpose of this chapter is to exemplify the subject **matter** of this book.
5. To repeat the experiment was a **matter** of several hours.
6. The penetrating nature of the X-rays was a **matter** of great interest for early workers in this field.
7. Building a transistor receiver is a relatively easy **matter**.
8. As a **matter** of fact, the variation in wavelengths is the principal distinction between the different types of electromagnetic radiations.
9. No **matter** how accurate the measuring device may be, repeated readings will not be the same.
10. Solids maintain their sizes and shapes no **matter** where they are placed.
11. No **matter** what improvements are made, it will not be possible for the vehicle to considerably exceed the speed of its own exhaust¹.

15. Переведите предложения, обращая внимание на различные варианты перевода выделенных глаголов.

yield (5,11)

1. It is evident that thermonuclear fusion reactions can **yield** propellant temperatures and performance far beyond that available at present by any other means.
2. To be efficient, a propellant should have a large heat of combustion to **yield** high temperatures.
3. Research on nuclear rockets **may yield** information useful to the construction of such a device.
4. The discovery of X-rays **has yielded** certain branches of medicine, radiology, radiotherapy and crystallography.

¹ exhaust — истечение (газов из сопла)

identify (5,28)

5. Some special device was used to **identify** the position of the emitted beam.

6. We saw earlier how the energy contained in an assembly¹ of molecules **can be identified** with the kinetic and potential energies of rotation, vibration and molecular interaction.

16. Переведите предложения, содержащие слово but (5,14) и словосочетания с ним. Обратите внимание на многозначность этого слова.

1. At that time aerodynamics was a new **but** very important science.

2. Since heat is not a substance **but** a form of energy, we cannot measure it directly in pounds or litres, **but** must measure it by the effect it can produce.

3. We study every day in the week **but** Sunday.

4. Several years ago the centigrade scale was in common use in all **but** English-speaking countries.

5. Our Sun is **but** a star of our Milky Way, which is **but** one of many galaxies.

6. The tailless missile generally involves **but** one set of control surfaces.

7. Heat energy is nothing **but** the energy of motion of the molecules of which matter is composed.

8. Life is nothing **but** an endless series of chemical reactions.

9. **But** for the development of the helicopter into a practical aircraft, there is no doubt that the autogiro would still be much used.

10. The accuracy and reliability of his method were so obvious that we **could not but** accept it.

17. Переведите предложения, обращая внимание на многозначность выделенных глаголов. После перевода повторите значения этих глаголов.

occur (5,15)

1. Acceleration **occurs** when thrust is greater than drag.

2. Vibration of aircraft due to landing tends to **occur** mainly at the lower frequencies.

3. The heaviest of all the naturally **occurring** atoms is uranium. It **occurs** in three isotopic forms.

estimate (5,30)

4. It is the purpose of this chapter to **estimate** the danger arising from uranium radiation.

5. Measurements of the changes of the Sputnik's orbit allowed the scientists to **estimate** the air density at a height of 200 kilometers.

6. The inside temperature of the Sun is **estimated** to be about 30,000,000° C.

¹ assembly — эд. группа

reveal (5,32)

7. Maxwell's equation reveals that all the waves of the spectrum have the same velocity in vacuum.

8. Radar is most successful in revealing isolated objects.

9. The length of the new turbojet is about 150 ft. Precise dimensions have not yet been revealed.

18. Переведите предложения, обращая внимание на многозначность существительного **background** (5,16).

1. The best time for the observation of Sputniks is when the Sun is below the horizon and illuminates the Sputnik against a dark **background**.

2. The book describes the **background** of current work on rockets and guided missiles.

3. The last four chapters of the book give the student **background** and related information which will broaden his understanding of the gas-turbine engine field.

4. One needs a **background** in astronomy and astrophysics in order to fully understand this text.

5. Every mechanic must have a **background** of special technical knowledge in order to operate and inspect his apparatus.

19. Переведите предложения, обращая внимание на перевод словосочетаний **in respect to** и **with respect to** (5,20).

1. Titanium metal is midway between steel and aluminum alloy **in respect to** mechanical strength and temperature resistance.

2. **With respect to** range surface-to-surface missiles may be of two types.

3. **With respect to** solar particles it is of course possible to say that they penetrate an interplanetary gaseous plasma made up by the particles constituting the slower components of solar corpuscular radiation.

4. Gamma rays and X-rays are both forms of electromagnetic radiation and differ only **with respect to** origin.

5. In unpowered flight in space the principal control problem is that of controlling the orientation of the vehicle **with respect to** a specified reference system.

20. Переведите предложения, содержащие прилагательные типа **outer**, **outermost**.

1. An **inner wing** is that part of a long airplane wing that lies inside the **outer wing**.

2. The **upper** part of the earth's atmosphere is called the ionosphere.

3. In a good conductor like copper, some of the **outermost** orbital electrons are only slightly bound to the atomic nucleus.

4. The **uppermost** part of the atmosphere, called the ionosphere, is located above the stratosphere.

5. The **innermost** planet of the solar system is Mercury.

21. Переведите предложения, содержащие глагол to draw (5,29). Укажите, от чего зависит перевод этого глагола.

1. Like the piston engine, gas turbine draws in atmospheric air which is compressed and then heated.
2. At saturation¹, electrons are being drawn to the anode as fast as the filament can produce them.
3. In Fig. 81 the lines showing the direction of the pressure are drawn at right angles to the surface of the airfoil.
4. History's first flight in outer space has made it possible to draw the immensely important scientific conclusion that manned flights in space are possible.
5. Above the critical temperature there is no reason to draw any distinction between liquid and vapour.

22. Переведите предложения, обращая внимание на перевод слова throughout (5,31).

1. Interplanetary gas, consisting mainly of ionized hydrogen, helium, and electrons, is distributed throughout the solar system.
2. During acceleration space pilot Yuri Gagarin kept in constant radio-telephone contact with the ground flight control station and felt well throughout this stage of flight. Throughout the period of weightlessness he also felt well.
3. We have tried throughout to emphasize certain basic concepts and their role in understanding the natural world.
4. When cooling is very slow and the temperature is uniform throughout the body of metal, crystals form more or less simultaneously throughout the mass.
5. Throughout this book the word "velocity" will always indicate a vector.

23. Переведите предложения, обращая внимание на перевод словосочетания to be familiar (with smth.) (5,33).

1. Every observer is familiar with the production of heat from other forms of energy.
2. Examples illustrating the production of electric charge are familiar to everyone.
3. We are all familiar with ice, water and steam, which are known as the three states of water.
4. The information in the guidebook was prepared essentially by those companies in the nuclear power industries most familiar with the section presented.

24. Повторение.

А. Переведите следующие прилагательные и подберите к каждому из них близкие по значению слова:

immense, evident, current, ordinary, external

obvious, outer, enormous, modern, conventional, great, recent

¹ saturation — насыщение

Б. Переведите, обращая внимание на выделенные словосочетания: in terms (of smth.), no longer, long before, at all, in view (of smth.), with a view (to smth.), to be aware (of smth.), to give rise (to smth.).

1. The power of mechanical devices can be given in terms of speed.

2. The basic concepts of thermodynamics are most easily understood in terms of simple experiments.

3. The re-entry of a space-vehicle is no longer a problem.

4. Experts predict that oil reserves will be used up long before coal.

5. The life on other planets, if it exists at all, is not like ours.

6. In view of its great simplicity the solid-propellant rocket is particularly well suited to developing very high thrusts during short periods of time.

7. Much research has been done on submarine sounds with a view to controlling noise.

8. Niels Bohr was aware that an atom possesses certain "stationary states" in which it emits no radiation.

9. The disintegration of the radioactive elements gives rise to three types of radiations.

Словообразовательное упражнение

25. Переведите следующие глаголы, обращая внимание на то, что префикс over- имеет значение «сверх», «чрезмерно», а under- — «недостаточно»:

estimate
charge
value

overestimate
overcharge
overvalue

underestimate
undercharge
undervalue

Упражнения на перевод терминов

26. Переведите термины, состоящие из слова self и причастия (I или II).

self-aiming antiaircraft missile

самонаводящаяся зенитная ракета

self-propelled antiaircraft artillery самоходная зенитная артиллерия

Английский термин	Область применения
self-directing missile	авиация
self-focusing device	телевидение
self-balancing phase transformer	электротехника
self-maintaining reactor	ядерная физика
self-destroying booster	ракетная техника
self-propelled launcher	то же
self-cooled device	ядерная физика
self-supported mechanism	автоматика

27. Переведите тёрмины, первым компонентом которых является слово *direct* («прямой», «непосредственный»).

direct-writing recorder
самописец с прямой записью

Английский термин	Область применения
<i>direct-reading meter</i>	автоматика
<i>direct-drive engine</i>	двигатели
<i>direct-motor drive</i>	электротехника
<i>direct-acting load</i>	машиностроение
<i>direct-coupled amplifier</i>	радиоэлектроника

Упражнения в чтении

28. Прочтите следующие глаголы, обращая внимание на произношение суффиксов *-ate*, *-ize*, *-fy*. Соблюдайте правильное ударение.

[eɪt]	[aɪz]	[aɪ]
<i>'separate</i>	<i>'ionize</i>	<i>'specify</i>
<i>in'corporate</i>	<i>'emphasize</i>	<i>e'xemplify</i>
<i>in'vestigate</i>	<i>'vapourize</i>	<i>'simplify</i>
<i>as'sociate</i>	<i>'specialize</i>	<i>i'dentify</i>
<i>ap'preciate</i>	<i>fa'miliarize</i>	<i>'amplify</i>
<i>'estimate</i>	<i>'pressurize</i>	<i>in'tensify</i>
<i>fa'cilitate</i>		<i>'purify</i>

29. Прочтите следующие слова, обращая внимание на произношение суффикса *-ate*.

у глаголов	у прилагательных
[eɪt]	[ɪt]
<i>separate</i>	<i>a separate room</i>
<i>moderate</i>	<i>a moderate speed</i>
<i>associate</i>	<i>an associate unit</i>

30. Прочтите следующие слова с префиксами *over-* и *under-*, соблюдая правильное ударение:

<i>'over'value</i>	<i>'under'value</i>
<i>'over'charge</i>	<i>'under'charge</i>
<i>'over'estimate</i>	<i>'under'estimate</i>

31. Прочтите следующие слова из основного текста:

<i>colour</i> ['kʌlə]	<i>exhibit</i> [ɪg'zibɪt]
<i>immense</i> [ɪ'mens]	<i>interior</i> [ɪn'tɪərɪə]
<i>yield</i> ['jɪ:lɪd]	<i>double</i> ['dʌbl]
<i>consequently</i> ['kɒnsekvəntli]	<i>throughout</i> [θru: 'aut]

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. APPLICATION OF ELECTRIC-PROPULSION SYSTEM

(Для перевода без словаря)

An electrically powered spacecraft will probably be used for a round trip to some distant planet. A comparison between an electric and a conventional system for a proposed trip to Mars will show definite advantages of an electric system. For an eight-man crew to go on a 500-day trip to Mars, the weight of the electric and conventional system would be 450,000 and 8,000,000 pounds respectively¹. Both systems would have to be assembled² in an Earth orbit. It would, however, take only two boosters to lift the material for the electric system while forty boosters would be needed for the conventional one. Electric power propulsion and all other needs would be generated by a nuclear-fission turbo-electric system.

There is, however, one problem that has not yet been discussed — the radiator equipment. Vapour exhausted³ from the turbine must be cooled and condensed before it returns to heat exchanger and the cycle is repeated. The cooling is accomplished with a radiator. This creates a weight problem, since a great deal of surface area is required for efficient heat exchange. Besides, to make the electric system practical, a large number of engines would be required because present designs are for engines generating only a small amount of thrust.

Much research has been conducted on electric propulsion systems as they can produce such low thrusts and can run for long periods. This means a high degree of reliability will have to be attained for such systems. Even with the large amount of research already accomplished, the electric system is still in a stage of development. Lighter and more powerful units must be developed if we want such systems to fulfil the promise they offer for interplanetary travel.

¹ respectively — соответственно

² assemble — собирать

³ exhaust — выбрасывать, выпускать

2. ION PROPULSION

(Для перевода со словарем)

In the various devices for ion propulsion now under development each molecule of the propellant (usually assumed to be an alkali metal, notably cesium) is caused to have an electric charge; that is, the propellant is ionized. This might be accomplished by passing the propellant over heated metal grids. It is then possible to accelerate the charged molecules, or ions, to very high veloci-

ties through a nozzle by means of an electric field. (Electrons are accelerated in a television tube in this fashion). The performance of such an ion engine is very good, with values of specific impulse reaching as high as 20,000 seconds. However, the amount of electric power required is very large, so weight of the power-generating equipment becomes a major obstacle to an efficient vehicle. It is supposed that some type of nuclear fission (or fusion, farther in the future) could be used to supply the energy for the electric power plant, although this step would still not eliminate the need for heavy electric generators, unless direct conversion of fission to electrical energy in large quantities becomes practical.

For example, an ion rocket offering 20,000 seconds of specific impulse, using cesium for the propellant would require about 2,100 kilowatts of electric power to produce 1 pound of thrust, assuming good efficiency. Optimistic estimates of electric power supply weight indicate that the power unit in question would weigh about 8,500 pounds. The weight of the ion accelerator itself is small in comparison. Therefore, an ion rocket can accelerate itself only very slowly (about 1/10,000 of 1 g in this example).

The primary consideration in obtaining useful thrust from ion or plasma rockets is the construction of lightweight electric power supplies. A gross reduction in electrical generation equipment, as compared with the most advanced modern equipment, is required to make the electric rocket really interesting for flight in the solar system.

3. OUR GALAXY

(Для перевода со словарем)

Our Galaxy proved to be a spiral system.

The question whether the spiral nebulae were island universes outside our own Universe continued to be debated for quite a long time. It has been only within recent years that the question has been finally settled. The key to the whole question was to find the distances of these nebulae, because if their distances were known we would at once know whether they were inside or outside our stellar system; we would also know their size and would be able to decide whether they were at all comparable in size with our own system. The problem was solved when it was found that within some of these nebulae there were stars which showed all the characteristics of the pulsating stars. The nebulae in which these stars were found were those of largest apparent size and therefore presumably the nearest to us. Their periods of pulsation were determined and their distances were inferred. They were found to be of the order of a million light-years. This was conclusive evidence that the spiral nebulae were outside our stellar Universe and that they were, in fact, island universes.

The size of these other universes proves to be of the same general order as that of our own Universe. It is found also that they are, like our Universe, in slow rotation; they may be thought of as gigantic celestial catherine wheels spinning round, with their vast spiral arms. They seem also to contain about the same amount of matter as our own system.

The general similarity between our Galaxy and the external universes suggested, by analogy, that our Galaxy is probably a spiral system.

If the Sun had been at some considerable distance from the central plane of the system, marked out by the Milky Way, the spiral arms could readily have been observed. But situated, as it is, practically in the central plane, it is not favourably placed for the spiral arms to be detected. The obscuring dust clouds in the plane of the Milky Way dim the distant stars and make it impossible to trace out the spiral arms, if they exist, with any certainty by optical or photographic observations. The development of radio-astronomy has removed this difficulty, for the dust clouds do not obscure radiations in the radio wavelength. Clouds of hydrogen gas emit radiations with a wavelength of 21 cms, and it has proved possible by radio methods to determine the direction and distance of these clouds, which are found to trace out well-defined spiral arms analogous to those observed in the spiral galaxies. Our Galaxy has in this way proved to be, as was suspected, a spiral system.

4. THE SPEED OF COMPUTERS

(Для перевода со словарем)

Speed of operation is the one basic achievement on which all the great developments of the last two decades in automatic computing have rested. We can now multiply two long numbers, of as many as twelve digits each, in the time taken by a rifle bullet to travel about a tenth of an inch. This speed in itself may not be very exciting, but whenever you get such an immense change in a capability you must look for the possibility of some qualitative effects. Take travel for instance. Over a century and a half we have progressed from horseback to railways, cars and aeroplanes, a speed increase of perhaps fifty times. This, as you know, has had a certain qualitative effect on people's lives. But in computing we are dealing with a factor, not of fifty, but of a million.

Let us look at two other fields where similar increases have occurred: printing and communication. An early printing press was capable of printing about 10,000 words per hour. Its modern equivalent is capable of printing something of the order of 10^{10} words per hour, and is therefore about a million times faster than its predecessor.

An early electrical telegraph operator could transmit perhaps 200 words per hour. The satellite communication channel could handle over 10^{10} words per hour if it were used for telegraphy. This therefore represents a speed increase of the order of 100 million. As we all know, printing and telecommunication have both had a tremendous effect on our society.

A desk calculator of the kind that was in common use in the 1930's could perform two or three hundred arithmetical operations per hour. An electronic computer is capable of doing several hundred million operations per hour and is therefore a million times faster than the earlier machines. In a few years we have achieved a millionfold increase in the speed of computing.

If given such a technical advance, what would we expect to see happen?

First, we would expect to see the immediate application of the new machines to jobs that are already formalized and for which computing procedures are known. Such applications are mostly found in scientific computing and in engineering design calculations.

Secondly, we would expect people to work out explicit rules for doing calculations where the rules were formerly ambiguous, such as in business data processing.

Thirdly, one would expect people to look for jobs where computation might provide a good alternative to present methods of inspired guess work, such as in business planning.

Fourthly, one would expect computers to be used as essential parts of systems designed to do things that simply could not have been done without computers.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как образуются простые формы сослагательного наклонения глаголов (§ 35)?

2. Назовите простые формы сослагательного наклонения глагола *to be*.

3. Как образуются сложные формы сослагательного наклонения (§ 35)?

4. По каким признакам можно определить, что глагол-сказуемое в следующих предложениях имеет форму сослагательного наклонения:

If there were no frictional forces the machine would be...

The demand is that the method be used...

It is desirable that the device should combine...

5. Укажите способы перевода сослагательного наклонения (§ 38).

6. Назовите возможные способы перевода формы сослагательного наклонения, образованной с помощью глагола *would* (§ 38, п. 3).

7. Какие значения может иметь глагол **should** (§ 41)?
8. Какие значения может иметь глагол **would** (§ 42)?
9. Укажите способ перевода бессоюзного условного предложения (§ 40):
Should the wing create more lift than the weight of an airplane climbing would occur.
10. Укажите значения служебных слов **because** и **because of** (упр. 10).
11. Какие значения имеют префиксы **over-** и **under-** (упр. 25)?

УРОК ШЕСТОЙ

Текст: Radar.

Грамматические основы перевода

Перевод несвободных словосочетаний с глаголом (§ 44—55). Обороты типа *it follows* (§ 54).

Различные значения местоимения *it* (упр. 10).

Лексические основы перевода

Перевод слов: *fit, medium, straight.*

Перевод словосочетаний *to be referred to* и *as follows.*

Перевод слов с префиксом *re-* (упр. 16).

Перевод терминов, первым компонентом которых являются слова *long* (упр. 17) и *high* (упр. 18).

ТЕКСТ

RADAR

Everyone is now familiar with the theory and many uses of radio. The use of radio as an aid to navigation had been well established before World War II. As early as 1939 most commercial and larger service aircraft were fitted¹ not only with communications equipment but with direction-finding loops^{*} so that they were in a position² to take bearings^{**} on ground transmitters. Radio direction finding was, in fact, the basis of such navigational aids. Yet, one should keep in mind³ that the wavelengths available for radio direction finding before the war lay in the m.f. (medium⁴ frequency) and h.f. (high frequency) bands⁵ and the inherent unreliability of these bands for direction-finding purposes, particularly at night, was largely responsible⁶ for the statement that radio could only be regarded as an aid to navigation.

It was the application of pulse technique^{***} to navigational

* direction-finding loop — антenna радиопеленгатора

** bearing — пеленг

*** pulse technique — импульсная техника

problems that gave rise to radar, the term being referred⁷ to as a code word for "Radio Detection and Ranging".

High-frequency radio waves are reflected from any surface or sharply⁸ defined region⁹ at which there is a decided¹⁰ change from the degree of conductivity or the dielectric constant of the air through which the radio wave is travelling. The fact that short wave radiation is reflected from everything, whose electric properties differ materially¹¹ from those of air is made use¹² of in radar.

In radar an electromagnetic signal is sent out, reflected or re-radiated from the object to be detected, and received at the place where the signal originated.

Radar waves are not sent continuously by the transmitter, but are emitted¹³ in brief¹⁴ pulses followed by idle¹⁵ periods. The reflected pulses are picked up¹⁶ by the receiver during instants in which the transmitter is idle.

Radar operates with frequencies of hundreds of millions of cycles per second, with wavelengths of only a few inches¹⁷ or centimeters. Such waves are similar to light waves in that they are bound¹⁸ to travel in straight¹⁹ lines or in lines of sight from the transmitter. The effective distance of detection and observation is limited by the fact that such waves cannot pass beyond the curvature of the earth which forms the horizon²⁰ and still be reflected back to a receiver which is near the transmitter.

The emitted pulses travel through space at a speed of about 186,340 miles per second. It follows that measurement of the length of time required for a pulse to go from transmitter to reflecting object and back to the receiver makes it possible to determine the distance travelled by the pulse. Half²¹ of the total²² distance travelled is the distance from the radar apparatus to the reflecting object. It takes²³ a pulse a little more than one ten-thousandth of a second to travel to an object ten miles away and return to the receiver, a duration²⁴ which makes it possible to get a continuous indication of the object on the screen of a cathode-ray tube*.

Radar was brought into use²⁵ during World War II to accurately get the range of an enemy ship or plane and to automatically direct gunfire toward the target. Now radar is largely made use of in peaceful applications. Without going into particulars²⁶ the purpose of radar may be defined as follows²⁷: to detect the presence of distant²⁸ objects, to indicate their distance from the apparatus, also their position to the right or to the left; and, if moving, their speed in relation to the position of the radar apparatus.

* cathode-ray tube — электроннолучевая трубка

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, в которых сказуемое выражено несвободными словосочетаниями типа «глагол to be + существительное с предлогом»:

to be in excess «превышать»; to be in progress «происходить, иметь место»; to be in a position «быть в состоянии»; to be under way «осуществляться, происходить, иметь место»; to be of interest «представлять интерес»

to be in excess (of smth.)

1. The consumption of fuel in a rocket engine is far in excess of other types of engines.

2. Gases exert on the walls of containers pressures which are far in excess of those that one would expect from the weight of the gas.

3. The control mechanism is usually designed so that corrective action is taken only if the deviation¹ is in excess of the permissible range of error².

to be in progress

4. Systematic observations and recording of meteorological characteristics have been in progress in numerous countries and on ships at sea for many years.

5. Research work and experimental investigations are constantly in progress to find materials with magnetic properties better than those in use.

to be in a position

6. We are now in a position to compare the cost of electricity generated in a nuclear plant with the cost of electricity generated in a conventional thermal station.

7. In some cases it is by the spectroscope that we are in a position to make statements as to the substances present in the stars.

8. So we are now in a position to determine the minimum current or emf detectable by means of a galvanometer.

to be under way

9. The study of space on a large scale with scientific instruments mounted on satellites is under way.

10. The reactor programme which includes all important types of reactors available is now under way.

11. There is also under way a search for new techniques of application of transistors.

¹ deviation — отклонение

² error — ошибка

to be of interest (value, importance, significance)

12. The orbit of Lunik III is of unusual interest.

13. The "storms" of corpuscular radiation range widely in intensity and it is of considerable importance to any space flight program to consider how dangerous they are.

14. As compared to an ordinary nuclear power plant, electrical-power-generating nuclear plant is likely to be of even greater significance in astronautics.

2. Переведите предложения, в состав которых входят несвободные словосочетания типа «глагол to come (to go)+существительное с предлогом»:

to come into use «начинать применяться»; to come into action, to come into play «вступать в действие»; to come into being «возникать»; to go into play «вступать в действие»; to go into service «начинать применяться»; to go into particulars «вдаваться в подробности»

to come into use, to come into action, to come into play, to come into being

1. A nuclear reactor will be practical at some future time when very large long-life space vehicles come into use.

2. When flying in the upper atmosphere new forces come into action.

3. The temperature on a planet that possesses an appreciable atmosphere cannot be easily calculated, because complex meteorological effect come into play.

4. We cannot say with certainty how the solar system had come into being.

5. In order to investigate how these new particles come into being, one must first study a very remarkable phenomena, the transformation of a photon of high energy into a pair of oppositely charged electrons.

to go into play, to go into service, to go into particulars

6. When speaking of momentum (the mathematical product of the velocity and the mass of an object), Newton's third law of motion goes into play.

7. A new radar recently went into service.

8. Here we shall not go into particulars as to modern trends in radio navigation technique.

3. Переведите предложения, содержащие несвободные словосочетания типа «глагол to bring (to put, to set)+существительное с предлогом»:

to bring into action «начинать действовать»; to bring into use «начинать применяться»; to put into use «вступать в действие»; to put into operation «вводить в строй»; to put into practice «начинать применяться»; to set into motion «приводить в движение»

to bring into action, to bring into use

1. When the rocket approaches the Moon new gravitational force is brought into action, that of the Moon.

2. Originally, radio was brought into use to communicate with ships at sea.

to put into use, to put into operation, to put into practice

3. The first nuclear power station was put into operation in 1955.

4. A new solar heliograph has recently been put into use in the Soviet Union.

5. The development of automatic computers is so rapid that often new designs have become obsolete¹ before they have even been put into practice.

to set into motion

6. Bodies and particles are set into motion when a force acts upon them.

7. Our first knowledge of motion and its causes come from our attempts to set bodies in motion.

4. **Переведите предложения, обращая внимание на перевод словосочетаний с глаголом to take:**

to take account (of smth.) «учитывать»; to take advantage (of smth.) «использовать»; to take care (of smth.) «заботиться, принимать меры»; to take part (in smth.) «принимать участие»; to take place «иметь место»; to take into account «принимать во внимание»; to take into consideration «принимать во внимание»

1. Vector addition takes account not only of the amount but of the direction of the quantities involved.

2. The first scientific atom picture which really took account of a wide range of phenomena was developed by Niels Bohr about 1913.

3. When planning communication in space we must take into account the ionosphere.

4. Many models were proposed for atoms, but the first scientific atom picture which really took account of a wide range of phenomena was developed about 1913.

5. Astronomers have begun to take advantage of several recent improvements in photographic materials.

6. There are two 1,500 v.a. inverters in this system: one inverter powers the radar, while the second takes care of other fixed-frequency equipment.

7. We have to take care not to use this measuring device when the voltage is too high.

8. Nearly all gas engines are driven by explosions which take place within the cylinder of the engine.

9. The process of fusion takes place inside the sun under enormous pressures and with temperatures of the order of twenty million degrees.

10. We define an atom as the smallest particle of an element which can take part in a chemical change.

11. We should take into account that X-rays and radioactivity are discussed from an experimental standpoint.

¹ obsolete — устаревший

12. We must always take into consideration the amount of force applied.

13. Thermodynamic properties of fluids must be taken into consideration when the fluid involved is readily compressible.

5. Переведите предложения, в состав которых входят несвободные словосочетания типа «глагол + существительное».

Заметьте, что значение словосочетания можно выяснить, исходя из значения существительного (§ 52).

to make use, to make reference, to make provisions

1. The steam engine makes use of the kinetic energy of steam.
2. The author always makes reference to the additional literature on every subject of interest to the reader.

3. The designers of airplanes often make provisions for placing some cargo in wings.

4. For orientation of the ship in the case of manual control, the spaceman makes use of an optical orientation that permits determining the position of the ship relative to the Earth.

to give consideration, to give mention, to give account

5. In the selection of a suitable power unit, we must give consideration also to simplicity and convenience.

6. In the report the author gave mention of the experiments which are being made in the upper atmosphere.

7. Electromagnetic theory can give a satisfactory account of the transmission of light in transparent media.

8. The three preceding chapters give an account of the geometrical theory of optical imaging.

to pay attention

9. The scientists pay the closest attention to all previous experiments and their results before starting their own experiments.

to place emphasis

10. In studying motion at constant speed around a circular curve, the author places emphasis upon the fact that even though the body moves at constant speed its velocity changes continually.

6. Переведите предложения, в состав которых входит вариант словосочетания «глагол+существительное», имеющий пассивную форму и, следовательно, измененный порядок следования компонентов.

Сравните словосочетание и его вариант:

to make use — use is made

Образцы:

1. Use is made of the fact that...

Используется тот факт, что...

2. Full advantage was taken of the properties of liquid metals...

Полностью использовались те свойства жидких металлов...

use is made

1. We know that the neutron is electrically neutral and use can be made of that property.

2. Several systems of units can be used to express electrical quantities; in this book use is made of the meter-kilogram-second system.

reference is made

3. Reference was made in the previous paragraph to different types of flow.

4. Reference has already been made to a metallic thermometer based on the expansion of solids.

5. For a full consideration of the behaviour of gases at rest reference should be made to any textbook discussing this subject.

provision is made

6. Provision should be made to identify the position of the emitted beam.

7. Satellites of the Moon can be established if provision is made to reduce their velocity in the vicinity¹ of the Moon.

8. The operation of any gas turbine engine requires that provision be made for three principal functions: 1) the compression of the air, 2) the expansion of the air by burning fuel and 3) the extraction of power from the jet stream of the engine.

mention is made

9. In this article mention is made of disturbances² in radio communication due to variations in the ionization of the D-layer.

10. Mention has to be made of radar antennas which are installed in modern military aircraft.

account is taken

11. Account must be taken of the forces which come into action when flying at supersonic speed.

12. As Bernoulli's equation can be properly applied to "ideal" fluids, in considering "real" fluids account must be taken of the force required to overcome viscosity.

advantage is taken

13. Advantage must be taken of special properties of germanium.

¹ vicinity — близость, соседство

² disturbance — помеха

14. The heat-transfer characteristics of liquid metals are so much better than those of gas that full advantage must be taken of this.

care is taken, care is exercised

15. Throughout the book care was taken to use the simplest mathematical methods that will yield the desired results.

16. As radioisotopes can kill living cells, great care must be taken in their use.

17. A great deal of care must be exercised when dealing with liquid propellants.

emphasis is placed

18. Much emphasis has been placed on Brownian movement, i. e. the motion of very small particles under the impact of gas or liquid molecules.

19. Throughout the book much emphasis has been placed on fundamental units of physics.

20. Much emphasis is placed upon electrical demonstrations to be performed by the instructor before student groups.

consideration is given

21. Detailed consideration is given to fluid compressibility in chapter 4.

22. Problems of navigation are much more complex in space. Careful consideration must be given to the velocity of the rocket and to the velocity of the Earth and any planet it is trying to approach.

account is given

23. Most of the details of guided missiles are secret, so that no full account of the various weapons can be given.

7. Переведите предложения, обращая внимание на перевод словосочетания to keep in mind и to bear in mind («помнить», «держать в уме»).

1. One must keep in mind that there is no such thing as a frictionless machine.

2. We have to bear in mind that space exploration is still in its infancy, and that man has by no means achieved a complete knowledge of all these aspects.

3. In our consideration of reaction devices we must keep in mind that solid-fuel rockets have been in use for many centuries.

4. It must be borne in mind that objects cannot fluoresce unless they are specially treated by ultra-violet.

8. Переведите предложения, обращая внимание на перевод словосочетаний типа «глагол + прилагательное»:

to be familiar «знать, быть знакомым»; to be aware «знать»; to be responsible «являться причиной», «обуславливать», «вызывать»; to hold true «быть справедливым, соответствовать действительности»; to feel certain «быть уверенными»

to be familiar

1. Everyone is now familiar with the principles on which radar works.

2. There are two properties of the atomic nucleus that should be familiar to us: one is its electric charge, the other its mass.

3. One more gas is familiar to us all, the coal-gas, which is supplied to houses.

to be aware, to become aware

4. Röentgen became aware of the existence of X-rays when he noticed that a fluorescent substance became luminous even through a thick layer of some material.

5. Astronomers have long been aware that the atmosphere is opaque¹ to the radiation of wavelengths shorter than about 2,900 angstroms.

6. Many people are aware that over-exposure to ultra-violet of certain kinds may be extremely dangerous, but they are not aware that the term "ultra-violet" covers a wide range of radiations whose physiological effects are dependent on wavelength.

to be responsible

7. Clouds are responsible for the brightness of Venus.

8. The solar radiation is responsible for some interesting phenomena occurring in the ionosphere.

9. Gamma rays and neutrons do not possess a charge, hence they cannot be responsible for direct production of ionization.

10. It has been found that organic molecules may be responsible for the dark areas on Mars.

11. Those sources of current in which chemical action is directly responsible for the flow of electricity have been called primary batteries.

12. Vibration due to turbine blades is responsible for the characteristic noise of gas turbines.

to hold true

13. The above-mentioned facts hold true for the regions of the body which are away from the leading and trailing edges.

14. Some of the scientific conceptions of ancient scientists hold true even now.

¹ opaque — непропускающий, непроницаемый

to feel certain (sure)

15. The experimentors **felt certain** that the achieved results would prove their assumptions.

16. K. E. Tsiolkovsky **felt sure** that space flight was a scientific possibility.

9. Переведите предложения, обращая внимание на перевод выделенных словосочетаний:

it **happens** that « случается, что», «оказывается, что»; **it requires** ... (to do smth.) « требуется ... (чтобы сделать что-л.)»; **it seems** that « кажется, что», «по-видимому»; **it appears** that « создается впечатление, что», «оказывается, что»; **it turns out** that «оказывается, что»; **it follows** that «из этого следует, что»; **It follows (from smth.)** that «из ... следует, что»; **it takes** ... (to do smth.) « требуется ... (для того, чтобы сделать что-то)»; **It takes (smth.) ... (to do smth.)** «(чему-то) требуется ... (для того, чтобы сделать что-л.)» (§ 54)

1. It often **happens** that when the weight of some item of equipment is changed, the direct influence of this change on the aircraft performance will be accompanied by other associated changes.

2. **It required** several hours to start an engine in Arctic conditions.

3. **It seems** possible that the results of the first experiments will be unsatisfactory.

4. **It appears** that up to 10^3 tons of solid matter fall on Earth daily as meteorites from the solar system.

5. **It turns out** that microwave region is as useful as the optical region for a number of applications.

6. **It turns out that** the problem of carrying away dangerous by-products is not yet solved.

7. Since electric charge can neither be created nor destroyed, **it follows** that the rate of increase of the total charge inside any volume must be equal to the flow of charge into this volume.

8. Since the effects of inductance are evident only when the current is changing, **it follows** that inductance cannot be measured in a steady-current circuit.

9. **It follows** from Bernoulli's theorem that where the velocity is higher, the pressure is lower.

10. **It takes** our Earth 365 days to revolve around the Sun.

11. **It will take** from 2 to 4 days to reach the Moon, depending on the exact velocity attained.

12. The time **it takes** a planet to travel around the Sun is called a year.

13. **It took** nature millions of years to make coal and oil.

14. It is possible to determine with considerable precision the time **it takes** a body to fall various distances.

10. Переведите предложения, обращая внимание на различные значения местоимения it.

1. It is possible from the results of Cavendish's experiment to determine the mass of the Earth.
2. It is known that the wave nature of light, because of diffraction, sets a limit on the resolving power of the optical microscope.
3. It was the Russians who provided the first artificial planet, Lunik I, which was launched on January 22, 1959, and passed the Moon at a distance of a few thousand miles only.
4. The light of the Sun is generally regarded as yellow, it is, however, much whiter than the light from ordinary artificial¹ sources of light.
5. The solution of Maxwell's equations shows that it is possible for varying electric and magnetic fields to propagate in space as an electromagnetic wave.
6. It should be pointed out that the ability of the electron microscope to form an image does not depend on the wave properties of the electrons. It is only when considerations of resolving power arise that the electron wavelengths come into the picture.
7. On the return to Earth the capsule of Luna 16 landed in the planned area. It was completely in order with no detectable damage.
8. It was Maxwell who made the great discovery that the equations governing the behaviour of electric waves are equally applicable to light.
9. The study of ferrites is a very extensive subject; here it is sufficient to state that ferrites are substances possessing special magnetic properties which can be varied by the application of an external magnetic field.
10. It is found that the Sun does not rotate like a solid body; at the equator a complete rotation takes place in $24\frac{1}{2}$ days, but in heliographic latitude² 30° , it takes $26\frac{1}{2}$ days.
11. It is of great interest to determine whether other stars, in common with the Sun, possess a corona and chromosphere.
12. Up to the present it has not been possible to detect molecular hydrogen in the universe.
13. The precise nature of the tremendous force inside the nucleus is not known, but it involves the particles called mesons. It is to learn about the mesons and the forces that they create that large machines such as cyclotrons, cosmotrons and betatrons are built.
14. It is natural to consider first whether it is possible to improve the accuracy of observational tests of the general theory of relativity by using artificial satellites.

¹ artificial — искусственный

² latitude — широта

15. In circuit theory it is convenient to assume that currents and voltages vary sinusoidally.

16. It is of interest to note that these methods are expected to influence a significant part of the electrical industry.

17. It requires a period a little short of two days for Mars to complete one revolution on its orbit.

18. It seems from recent research in biophysics and biochemistry that all terrestrial life is based on the properties of the molecules of ribonucleic acid (RNA) and desoxyribonucleic acid (DNA).

19. It is hard to believe that such technical problems will not be solved shortly.

20. It is possible to investigate Martian biology by automatic methods so that exobiological studies do not need to await manned landings.

11. Повторение. Переведите предложения, обращая внимание на перевод различных форм глагола-сказуемого:

A. Временные формы глагола-сказуемого

1. In recent years a variety of semiconductor devices have been developed for use as components in electronic circuits.

2. Whenever we see that an object suddenly begins to move, we assume at once that something has acted, or is acting, upon to produce the change.

3. Work is being done by new methods, and we can now have full confidence that the speed of light in a vacuum is not far from 2.9979×10^{10} cm/sec.

4. The most famous of these almost stable atoms is radium, which was successfully isolated by the Curies in France and since then has been widely used for medical treatment.

5. A treatment of the composition of the atmosphere would not be complete if attention were not given to the phenomena of atmospheric electricity connected thereto.

6. In the previous chapters some of the so-called fundamental particles of physics have been discussed and some of their properties have been enumerated¹.

7. Within the last few years spaceships loaded with delicate instruments have been leaving the Earth to study the Moon and the planets close-by.

8. Solar plasma is frequently called "solar wind" and consists of charged particles that are continually streaming outward from the Sun.

9. Before space vehicles became available a considerable body of information about upper air had already been built up.

¹ enumerate — перечислять

10. So far we have been discussing atmospheric effects which are controlled by the electromagnetic radiation from the quiet Sun.

11. Several scientific experiments are being carried aboard the Sun study satellite. The instruments will scan the solar disc every two seconds when the spacecraft is in sunlight.

12. A special instrument, the "field electron microscope", has been built for the exploration of metal surfaces. These investigations have led to images of single molecules.

13. This chapter has provided the preliminary knowledge of the nuclei that will be needed for the discussion of spectroscopy and the periodic table of elements.

14. As in all branches of the subject, improved equipment is being designed to provide much more detailed and definite information about the variation of X-ray intensity at different wavelengths over the solar disc.

15. When the Earth was being formed, any hydrogen or helium atoms near it were made to move so fast by solar radiation that they escaped from the Earth's gravitation just as if they were rockets exceeding the modern Earth's escape velocity.

16. Methods of putting the principles of radar into practice will be dealt with later.

Б. Формы сослагательного наклонения (§ 34—40)

1. A lunar mission requires that at least 95 per cent of escape velocity be achieved to reach the vicinity of the Moon.

2. For interplanetary trips, it is necessary that the vehicle exceed escape velocity.

3. Were it not for the atmosphere, the very lowest energy particles would penetrate to the earth's surface at the geomagnetic poles.

4. Could our eyes view centimeter radio waves, we would see a much larger Sun.

5. If Antares were our Sun, it would extend too far beyond the orbit of Mars.

6. Because of the high temperature on the sunny side, Mercury's atmosphere, if it had any, must have escaped long ago.

7. Newton concluded that if the horizontal velocity of a cannon ball were great enough, the curvature of the falling ball would be the same as the curvature of the Earth and the cannon ball would go all the way round the Earth.

8. The tanks used for holding liquid hydrogen in a nuclear rocket would need to be double-walled with a vacuum maintained between the walls.

9. The vacuum might also be produced by filling the space with some gas which would condense at the temperature of liquid hydrogen.

10. Outside the Earth's atmosphere, the insulation problem is negligible and it would seem to be a simple matter to arrange for the liquid hydrogen temperature to be maintained at, say, -258°C by a small refrigerating system.

Лексические упражнения

12. Переведите предложения, обращая внимание на многозначность глагола **to fit** (6,1). Назовите слова, на значение которых вы опирались при выборе перевода глагола.

1. Beta particles, being repelled by other electrons, are better fitted for penetrating matter than alpha particles.

2. Altimeters used in aircraft are fitted with a subscale in millibars.

13. Переведите предложения, обращая внимание на то, что выделенные слова представляют собой различные части речи. Определите, какой частью речи они являются и как переводятся.

medium (6,4)

1. Radio waves travel through the **medium** of air.

2. Cherenkov counters make use of photo-multiplier tubes¹ and **media** which are sensitive to the passage of charged particles.

3. **Medium** and long-distance radio communications are conducted on high frequencies.

straight (6,19)

4. In the absence of the force of gravity a body will continue to move in a **straight** line.

5. The vertical motion of a projectile is the same as that of a body which is thrown **straight** up.

14. Переведите предложения. Выберите нужный перевод выделенных слово-сочетаний.

to be referred to (as smth.) (6,7)

1. Heat **has been referred to** earlier as a form of energy.

2. The age of the electronic computer is often **referred to** as the Second Industrial Revolution.

3. In communication engineering, interference with a received signal is **referred to** as noise.

4. The various kinds of missiles are **referred to** as surface-to-air, air-to-air, air-to-surface and surface-to-surface missiles.

5. Kinetic energy **has already been referred to** as the energy possessed by a moving body due to its speed.

as follows (6,27)

6. The pumping action of a centrifugal pump may be understood **as follows**.

¹ photo-multiplier tube — фотоумножитель

7. The theoretical values obtained by various investigators are as follows.

15. Повторение.

А. Переведите предложения, обращая внимание на перевод глаголов:
to correspond, to fail, to associate, to provide, to facilitate, to appreciate,
to reveal, to occur, to exhibit, to yield

1. The air pressure of 87 mm corresponds to an altitude of about 50,000 feet.

2. The engine fuel system usually includes an emergency system¹ to supply fuel to the engine when the main system fails.

3. The real problems of the turbine are, of course, associated with the high gas temperature.

4. The infra-red spectrum of molecules have provided an excellent field for study and verification² of the theoretical predictions of quantum mechanics.

5. It is possible to facilitate the escape of an electron from a conductor by increasing its speed.

6. It is not difficult to appreciate the problems facing the rocket engineer who must design engines involving gas temperatures of 5000 degrees.

7. The man who at last revealed the secret of Saturn's rings was Huyghens in 1655.

8. There is abundant evidence of the energy change which occurs when systems undergo structural rearrangement.

9. An excess of electrons causes the atom to exhibit the properties of a body charged positively.

10. Each fission process of such a kind yields two radioisotopes and about one excess neutron.

Б. Подберите английские глаголы, соответствующие по значению следующим русским глаголам:

приобретать, получать; полагать, считать; исследовать, изучать; позволять, разрешать; случаться, происходить; открывать, обнаруживать

explore, obtain, happen, discover, take place, disclose, acquire, achieve, assume, study, attain, suppose, believe, occur, reveal, investigate, permit, show, receive, consider, allow

Словообразовательное упражнение

18. Переведите следующие слова, обращая внимание на то, что префикс г- означает повторность действия (например, write «писать», rewrite — «снова писать»):

re-form, renew, re-radiate, readjust, reuse, re-entry

¹ emergency system — аварийная система

² verification — подтверждение

Упражнения на перевод терминов

17. Переведите термины, первым компонентом которых является прилагательное *long* («длинный», «длительный»)

long-endurance flight (авиация)
полет на продолжительность

Английский термин	Область применения
long-range gun	артиллерия
long-run test	машиностроение
long-distance cable	связь
long-time memory	вычислительная техника
long-wave transmitter	радио
long-life device	»
long-distance record	авиация
long-distance telephone	связь
long-duration test	авиация
long-term records	»

18. Переведите термины, первым компонентом которых является прилагательное *high* («высокий», «большой»).

· high-power station (электричество)
силовая станция большой мощности

Английский термин	Область применения
high-speed storage	счетно-решающие устройства
high-speed indicator	электротехника
high-speed switch	»
high-power gun	артиллерия
high-power modulation	радио
high-ratio transformer	электротехника
high-wing monoplane	авиация
high-pass filter	радио

Упражнения в чтении

19. Прочтайте следующие слова, обращая внимание на чтение буквы «е» перед буквой «г» в открытом ударном слоге:

inherent, period, materially, experience, inferior, superior

20. Прочтайте слова с префиксом *re-*, соблюдая правильное ударение:

‘re-’form, re’new, ‘re-’radiate, ‘rea’djust, ‘re’arm, re-’entry, ‘recons’truct, ‘re’organize

21. Прочитайте следующие слова из основного текста:

bearing ['beərɪŋ]

horizon [hə'raɪzn]

straight [streɪt]

half [ha:f]

particulars [pə'tɪkju:ləz]

22. Прочитайте предложения, соблюдая правильное ударение и расстановку пауз.

1. ... the 'term being re'ferred 'to | as a 'code 'word...

2. 'Now 'radar is 'largely 'made 'use 'of | in 'peaceful appl'i-cations.

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. THE MOTION OF A RIGID¹ BODY

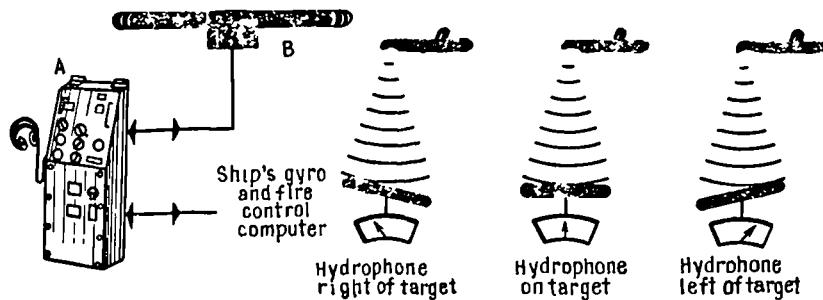
(Для перевода без словаря)

After the problem of motion of a particle the simplest problem of dynamics is that of motion of a rigid body. This last problem reduces to the following two problems: (1) the motion of the centre of mass **G** of the body, and (2) the motion of the body with respect to its centre of mass considered as a fixed² point. Consequently, every problem of the motion of a rigid body, for instance, the motion of a planet or an artillery projectile, contains the problem of motion of a rigid body about a fixed point as one of its component problems. We are also faced with the same problem in the theory of gyroscopic phenomena known to underlie the construction of gyroscopic instruments, for example, the aircraft gyroscopic flight instruments. Therefore, the problem of motion of a rigid body about a fixed point is not only of theoretical interest but also of great practical value. This problem and the problem of three bodies are the most famous of all unsolved classical dynamical problems.

Although the problem of motion of a heavy rigid body about a fixed point is completely or partially solved in certain special cases such as those of Euler, Lagrange, Kovalevskaya, Hess and others, very little is known about the motion of a heavy rigid body when mass distribution or the initial conditions of motion are arbitrary³. The same holds true in the three-body problem.

After the cases considered by Euler (1758) and Lagrange (1788), there was no progress for 100 years toward the solution of the problem of motion of a heavy rigid body about a fixed point. Obviously, a new approach to the problem was needed.

The success of Kovalevskaya (1888) lies in her new and more general reformulation of the problem in terms of the theory of analytical functions. Considering the time t — the independent variable — as a complex variable, Kovalevskaya proposed to find all cases of motion for which the parameters defining the motion can be expressed as meromorphic⁴ functions of t containing five arbitrary constants. As a consequence of her proposition, she came to the conclusion that, besides the cases of Euler and


Lagrange, there is only one new case possible which at present is known as the case of Kovalevskaya.

- ¹ rigid — жесткий
- ² fixed — неподвижный
- ³ arbitrary — произвольный
- ⁴ meromorphic — мероморфный

2. SONAR AND THE FOURTH DIMENSION (Для перевода со словарем)

The ocean depths — sometimes referred to as the fourth dimension at sea — are becoming witness to nuclear-powered streamlined-hull submersibles and to the missile-firing submarines. We are all familiar with the fact that seven-tenths of the surface of the Earth is covered by water, which adds further to

The operation and system block diagrams of typical passive sonar equipment. An elemental system shows (left) A — the console and B — the rotating hydrophone. Sketches to the right illustrate use of a bearing deviation meter.

the importance of this high speed strategic weapon. For effective anti-submarine warfare, means have to be found for penetrating the submarine's "cloak of invisibility". The mysterious ocean depths serve as ideal hiding places that cannot be penetrated to any extent by visible light, radar, or similar forms of radiation. The primary form of energy to be used in submarine detection is acoustic compressional waves of the sonic or ultra-sonic range. This is sonar — and sonar thus represents the most effective system for determining the range, bearing, and depth of completely submerged objects in the sea.

What is Sonar?

Sonar, a word coined from "Sound Navigation and Ranging"¹ has come to be generally applied to the various types of underwater sound devices for the detection of submerged objects and for oceanographic measurements. These equipments have different

degrees of complexity and scope but their basic operational principles may be classified in two fundamental types:

passive or listening sonar;
active or echo-ranging sonar.

Passive Sonar

Use is made of passive sonar to search for underwater noise-producing objects. Passive sonar can give target bearing at great range while remaining silent in itself. In a passive sonar system, the underwater sound is detected by acoustically sensitive hydrophones. When the compressional sound pressures reach it, the hydrophones generate small voltages which are amplified and are used to indicate the presence of the underwater sound source to the operator.

Active Sonar

Active or echo-ranging sonar is similar in operation to a radar system. Pulses of sound energy are transmitted into the water, and upon striking a submerged object, part of the sound energy is reflected back to the sonar unit. The echo indicates the presence of the submerged object, and the time interval between the transmission and reception is a measure of the range. Echo-ranging sonars have the advantage over conventional listening sonars of providing range information as well as bearing data, but have the disadvantage of much shorter ranges. This results from the reduction of the sound pressure in going to the target and returning from it, and the incomplete reflection of sound from the target. A further disadvantage of active sonars is the fact that they are responsible for high intensity acoustic energy in the water and are thus quite susceptible to detection by other sonars.

¹ ranging — определение расстояния

3. OUR COSMONAUTS

(Для перевода со словарем)

"Space pilot" is a new occupation which has come into being for the first time in history.

The selection of people fit physically for space flight and the scientifically conceived special preparation and training of them were all novel problems. In solving them, the scientists proceeded from the peculiarities of space flight, from the results of the many previous biological experiments, from the knowledge of the conditions of a man's stay and work in the cabin of a spaceship and from the response an astronaut was likely to show during flight.

Naturally, a would-be¹ astronaut could only be an absolutely healthy man possessing a high level of intellectual development and technical knowledge, a man with strong will, able to take

instantaneously well-motivated decisions in a strained situation, to realize them immediately, and to evaluate the situation quickly and unerringly.

The selection procedure included a thorough examination of would-be astronauts in a clinic. Besides, use was made of special techniques which made it possible to determine fully enough the functional potentialities of the human organism and its adaptability to the adverse environmental factors.

Special emphasis was placed on the psychological investigations. The preparation course included theoretical subjects dealing with the tasks to be accomplished in flight and training in the skills necessary for the space pilot to operate the cabin equipment and scientific instruments. Naturally, the physical fitness of an astronaut was of primary importance in the pre-flight training.

Physical training was purposeful. Use was made of techniques and facilities employed in regular physical-training exercises so as to perfect the physical qualities essential to a man in space flight.

A good deal of attention was devoted to special exercises. Their principal aim was to let the astronaut get accustomed to the conditions likely to arise in space flight.

Thus, the training of an astronaut for space flight was a difficult scientific problem. However, in spite of all its complexity and unusual difficulty, it was solved successfully.

The first space flight in man's history, which Soviet cosmonaut Yuri A. Gagarin effected in the satellite space-ship "Vostok" has made it possible to draw the scientifically vastly important conclusion that manned space flights are feasible.

¹ would-be — эд. будущий

4. THE DOPPLER EFFECT (Для перевода со словарем)

The Doppler effect is the apparent change of wavelength of light (or any other form of wave motion) when the source and the observer are in motion relative to one another.

The following analogy will illustrate the principle. Suppose that a ship is at anchor in a sea-way. If the waves are regular, a certain number of them are bound to pass under the ship during a given interval of time. If the ship were moving directly into the waves, it would encounter more than that number during the same interval, and if moving with the waves it would encounter fewer. The frequency of the waves as observed from the ship would vary according to the ship's motion, and the same would be true of their wavelengths.

The principle holds true in the case of light from a star: if the relative motion between the star and the Earth is such that the star may be said to be approaching the Earth (or, in other words,

the Earth may be said to be approaching the star) an observer on the Earth encounters more light waves per second, i. e., the frequency of the light waves will seem to have increased and the lines of the spectrum will have shifted towards the violet end. For a receding star there will be a similar shift towards the red side of the spectrum. Emphasis is placed on the fact that this displacement of the spectral lines can be accurately measured, and the relative velocity of approach or recession can be calculated from it.

In certain cases the Doppler effect may also be used to detect rotation of a star. If the rotation is sufficiently rapid, the relative velocity of the edge or "limb" of the star which is turning towards the Earth will differ from that of the limb which is turning away from the Earth. The spectral lines in the light from these two limbs will, therefore, be displaced in opposite directions along the spectrum, while the light from the central part of the star's disc will remain unaffected. This will bring about a broadening of the spectral lines.

Exactly the same method is made use of in radio astronomy to find out relative velocities from changes in the frequency of radio emissions whose true frequency is already known from other considerations.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие словосочетания называются несвободными (§ 43)?
(Cр. to take part и to take a book).

2. Какое слово в глагольном словосочетании (to pay attention, to draw a conclusion) является основным в смысловом отношении? В какой последовательности следует переводить слова для раскрытия значения глагольного словосочетания (§ 52)?

3. Как образуется пассивная форма следующих словосочетаний (§ 52).
to make reference, to make mention, to take account, to take advantage, to place emphasis, to give consideration, to give account.

4. Какие пассивные формы имеют словосочетания to make use и to take care (§ 52)?
5. Как переводятся на русский язык следующие словосочетания (§ 45—53):

to be in a position, to be under way, to come into play, to come into being, to go into particulars, to take into account, to take into consideration, to bear in mind, to be familiar, to be aware, to be responsible, to hold true, to fall certain, to be bound (to do smth), to be referred to as (smth).

6. Как переводятся на русский язык следующие обороты (§ 54):

it seems, it happens, it appears, it requires, it takes, it follows, it turns out that.

7. Какое значение придает словам префикс **re-** (упр. 16)?

УРОК СЕДЬМОЙ

Текст: Computers.

Грамматические основы перевода

Перевод предложений с инверсией (§ 93—97).

Лексические основы перевода

Перевод слов: *feed, extend, neither, nor, add, subject, once, art.*

Перевод словосочетаний: *along with, by virtue of.*

Перевод оборотов: *this is the case и as far as (smth.) is concerned.*

Перевод слов с префиксами *pre-, post-* (упр. 21).

Перевод терминов типа «сложное прилагательное с суффиксом *-ed* + существительное» (упр. 22) и терминов, вторым компонентом которых является слово *proof* (упр. 23).

ТЕКСТ

COMPUTERS

(Fundamentals)

An automatic computer is not a “black box” into which one could *feed*¹ **raw**² information, and which after a *slight*³ pause, would not fail to release finished reports, statements, *schedules*⁴, analyses, statistics, and answers.

Computers are devices which **process**⁵ **input**⁶ data to provide output data, but input information, which the computer is to process certainly is far from “raw”, because in the typical case, the input information is itself the result of an **extensive**⁷ collection and processing operation. To get even one report from a computer requires the **prior**⁸ application of a great deal of intensive **skilled**⁹ human **labour**¹⁰.

Given below are some **fundamentals** concerning computer operations.

Computers perform with great speed and accuracy many operations that **up to**¹¹ now have traditionally been done only by human labour. Already they are showing themselves capable

of playing games, translating languages and even "learning from experience"¹². Not only can computers be taught to prove theorems of geometry and logic, read handwritten letters and other manmade patterns, but they can write sonatas and poems.

This fact has led some writers to liken computers to "brains". But, perfect as modern computers are, they cannot be called "brains", however, because most of the real brain-work goes into drawing up the orders so that the machine can carry them out. Automatic computers are not able to devise¹³ a way of solving a new problem even when given the data. Nor¹⁴ can computers do any data processing without being instructed. It is the human being that has to think out a way of solving the problem, and then instruct the computer how to solve the problem when given the data. The computer will do exactly what it has been asked to do.

The human operation of instructing the computer is called programming, and the resulting set of instruction is called a program or a routine. This programming activity is actually a combination of two other activities: the breaking down of a complete operation into a sequence¹⁵ of simple operations (such as adding¹⁶, multiplying, comparing, writing, etc.) along with¹⁷ the modifying¹⁸ and writing up of the sequence of simple operations into a set of instructions that can cause the computer to do complex operations provided the input data are given.

Computers can "remember" and "recall"¹⁹ and virtually²⁰ unlimited is the capacity of automatic computers to remember (that is, to store²¹ information). Associated with the capacity of remembering is the capacity of recalling—the larger the amount of information computers remember (store), the slower is the recall.

In operation all computers accept input symbols and produce output symbols. Because of this it is often helpful to think of a computer as a device for converting input information into output information. It must be remembered, however, that not until²² a program is prepared does a computer perform any conversion or transforming (that is, a data processing). To be more precise²³, not only is it necessary to specify in detailed form the instructions comprising²⁴ a program, but the detailed instructions must be arranged in a logical sequence which involves listing the logical steps required by the input-to-output conversion. The instructions have to be made absolutely complete in every detail and yet expressed²⁵ in terms the machine can "understand".

Computers are subject²⁶ to failures, i. e. they do not completely avoid²⁷ making errors. This lack of perfection is not exactly a disadvantage, however, because the proportion of error in the work of a computer is usually very much smaller than

would be the case²⁸ if the same amount and type of work were done in the same amount of time by any other means.

Now, in considering the capabilities of the computer it is necessary to emphasize that once²⁹ prepared, a program can be reused any number of times. As far as the limitations are concerned³⁰, we may say that although the computer cannot completely avoid errors, it is much more error-free³¹ than are the available alternatives³².

The electronic computer had more effect on the modern world than any other technological development the world has ever known, and its potential appears to be unlimited. Computers are used in science, education and space exploration. In fact, space exploration, as we know it today, would be literally impossible without the aid of the computer.

There is no doubt that computers will be used more and more in science and industry. Electronics is the basis of these machines. The third generation of computers now in use is built on tiny microelectronic circuits, called solid logic technology. Some of these computers are smaller than a file drawer*. They are more than 1,000 times faster than the first models. As the art³³ of electronics — the basis of these machines — develops, so³⁴ will the changes be felt³⁵ throughout the whole field of computing.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, содержащие инверсию.

Помните, что на первом месте в предложении с инверсией может стоять неизменяемая часть сказуемого, выраженная причастием I, причастием II, существительным с предлогом или прилагательным. Перевод таких предложений следует начинать со слов, стоящих после вынесенной на первое место части сказуемого, а затем перейти к переводу самого сказуемого (§ 94).

Образцы:

1. Revolving around the nucleus are electrons...

Вокруг ядра врачаются электроны...

2. Included in this table are the data...

В эту таблицу включены данные...

3. Under development in Dubna is the particle accelerator...

В Дубне разрабатывается ускоритель частиц...

4. Important for the investigation of upper atmosphere is the knowledge...

Для исследования верхних слоев атмосферы важно знать...

* file drawer — ящик картотеки

1. Discussed in this chapter are some of the general characteristics inherent to semiconductors.

2. Included in this section is a description of a typical air-borne liquid oxygen system.

3. Shown on the photo is the equipment available at many airports to start piston-engined aircraft.

4. Described in this book are all the rocket space-probing craft including the sputniks.

5. Associated with each electron is a wave which is propagated in the direction of the motion of the electron.

6. Now under construction at the aircraft plant near N. is the research airplane which will reach a height greater than all the preceding aircraft of this type.

7. Acting on a body are few forces which cannot be neglected.

8. Of primary importance to science will be the knowledge obtained by sputniks of radiations which bombard the outer layers of the atmosphere before they are filtered by absorbing layers in the lower atmosphere.

9. Of primary interest to the nuclear physicists are the so-called mesons, which can be produced and studied in the laboratory and which are believed to be closely related to the forces between nuclei.

10. Similar in structure to the solar system is the atom.

11. Fundamental to the preliminary design of any reactor is a knowledge of the conditions required for nuclear criticality.

2. Переведите предложения с инверсией, в которых на первом месте стоят обстоятельственные слова с выделительным или ограничительным значением.

Помните, что в этих предложениях первая (изменяемая) часть сказуемого стоит перед подлежащим, а вторая — после подлежащего. Если сказуемое состоит только из одного слова, то перед подлежащим стоит вспомогательный глагол *do* (*did*), который не переводится (образец 2). Перевод в обоих случаях следует начинать с обстоятельственных слов, затем перевести подлежащее, а за ним сказуемое (§ 95).

Образцы:

1. Only in recent times was the theory developed that...

Только недавно была разработана теория, которая...

2. Only in rare instances does the operating time of the rocket engine exceed...

Только в очень редких случаях время работы ракетного двигателя превышает...

1. Only in this century have we found how to control, create and destroy the nucleus of the atom.

2. Not only does the number of protons present in the nucleus determine the element the atom forms, but it determines the chemical characteristics of that element.

3. Never before has the imagination of mankind been captivated¹ so much by the concept of space.

4. Not until 1907, when gasoline engines were available, did the first helicopter fly.

5. Not only did the Greeks know that the Earth was spherical, but they measured its size with an appreciable accuracy.

6. Science is a continuing process and at no stage can one say that one's knowledge is complete and final.

7. Not only do electrons increase the mass as they get to higher energies, but at very high energies they actually radiate away their energy as electromagnetic waves, some short enough to appear as visible light.

8. Although the existence of infrared radiation was realized well over a century ago, only in the last two decades have applications been widespread.

9. Not only do metals conduct heat, but so do all other substances.

3. Переведите предложения, содержащие инверсию, которая начинается словами *neither* или *nor*, имеющими значение «также не».

Образец:

The length of the axial rotation period of the planet remains unknown, nor is the axial inclination known.

Продолжительность периода вращения этой планеты вокруг оси неизвестна, а также не известен наклон ее оси.

1. The Milky Way is not uniform in brightness, nor is the distribution of the stars in the Milky Way uniform.

2. In the tropical regions of the world, the weather is subject to the influences of other temperature zones. There exists no well-defined air mass density, neither are there well-defined pressure patterns.

3. Great cold may not by itself make life (on other planets) impossible, nor by itself may great pressure.

4. The Moon having no atmosphere, there can be no wind, nor, of course, can there be any noise, for sound is carried by the air.

5. The result of measuring the intensity of ionizing radiation in the E-layer was quite unexpected, nor had it been foreseen by the solar physicists.

6. The need for reliable, rapid and efficient means of communication has never been greater than it is to-day — nor is this need likely to decrease in the future.

¹ captivate — захватывать

4. Переведите предложения, содержащие инверсию, которая начинается словом *so* («также»).

Заметьте, что в этих предложениях сказуемое представлено не полностью, а лишь вспомогательным или модальным глаголом. При переводе однако, рекомендуется полностью повторить сказуемое первого предложения.

Образец:

The glass rod if rubbed with silk attracts small objects, so does the sealing wax.

Стеклянная палочка, если ее потереть о шелк, притягивает небольшие предметы; *также притягивает* небольшие предметы и сургуч.

1. Copper readily allows electric current to flow through it and so does silver.

2. As the art of electronics itself develops, so will the changes be felt throughout the whole field of computing.

3. Sputnik II provided one of the simplest and, at the same time, most sensitive methods of recording the intensity of micrometeors, so did Sputnik III.

5. Переведите предложения, содержащие инверсию.

Заметьте, что на первом месте в предложении стоит прилагательное, за которым следует союз *as* или *though* (имеющий значение «хотя», § 97). Перевод рекомендуется начинать с союза, затем перевести подлежащее, находящееся за союзом, а уже потом сказуемое.

Образец:

Important as this problem is in itself...

Хотя эта проблема и является важной...

1. Little though the probability of a collision of rockets and large meteors may be, the possibility still exists.

2. Useful as electron tubes are, they are not essential to the successful operation of electronic devices.

3. Uncertain though information about meteoritic input to the earth's atmosphere may be, the satellite data indicated an estimate of 800,000 to 1 million tons per day.

4. Difficult as it is to observe the surface markings of Mercury, it is far more difficult to obtain any certain evidence of an atmosphere.

5. Simple as it seemed at its discovery, the neutron is now known to be a very complex object.

6. Lightweight though titanium is, it in certain respects exceeds in strength some of the best grades of steel.

6. Переведите предложения, используя приведенные ниже слова и словосочетания. Употребите инверсию.

1. На рисунке показан циклотрон.

2. Вокруг ядра располагаются электроны.

3. С тягой двигателя тесно связан вес самолета.

4. К каждой летной школе прикреплены инструкторы.
5. В этой главе описываются основные виды снарядов.

the cyclotron, on the photo, is shown
the nucleus, the electrons, are surrounding
with thrust, the weight of the airplane, is associated
to every pilot school, instructors, are attached
in this chapter, the main types of missiles, are described

7. **Переведите предложения, содержащие инверсию.**

Заметьте, что если во втором предложении, содержащем инверсию, на первом месте стоит причастие, то часто для связи его с предыдущим предложением приходится вводить слова «при этом», «здесь же», «сюда же» и др.

1. The book attempts to give a fairly detailed description of the first astronautical experiments made from artificial satellites. Given also are some of the theoretical investigations that have gone along with these experiments.

2. Rutherford and Niels Bohr came to the conclusion that the atom consisted of a central core, the nucleus, having a positive electric charge. Revolving around it in various orbits are a number of negative electrons.

3. Prior to flight, all operational equipment that can be operated on the ground is "run" and its functioning is checked¹. Included are engines, flight controls, radios, navigational instruments, etc.

4. The basic properties inherent to the materials used for electromagnets and permanent magnets are considered in this chapter. Included are the calculations of magnetic circuits and some facts about the earth's magnetism.

5. As the velocity of an electron increases so does its kinetic energy.

6. Neither the protons nor the neutrons or electrons involved in the process of fission disappear. Nor do they become smaller.

7. Little as it is this thermal radiation can be detected from the Sun's surface at very short radio wavelengths.

8. Only within comparatively recent times has it been widely accepted that the Earth, rather than the sky, rotates.

9. Although the biosphere is mainly composed of hydrogen, carbon, nitrogen and oxygen, other elements are essential constituents of living matter. Notable among them are phosphorus and sulfur.

10. A few materials, notably the transition elements Co, Ni, Fe, exhibit ferromagnetic behaviour. Not only are they attracted very strongly by a magnetic field but they often have a strong magnetic moment even in the absence of an external magnetic field.

¹ check — контролировать

11. The detailed mathematical investigation of the orbits of a charged particle entering the field of a magnetic dipole from a great distance showed that in no case could such particles be trapped¹.

12. No longer can we, with absolute truth, say of light that it travels in straight lines. No longer can we say, convincingly² that parallel lines never meet; nor that the straight line joining two points is the shortest distance between them.

8. Переведите предложения.

Помните, что служебное слово **not until** может быть союзом или предлогом: **сј** — «только, когда»; **ргр** — «только в», «только после». Заметьте, что после служебного слова **not until** может употребляться инверсия.

• 1. The phenomena of electricity was discovered quite early, but **not until** the end of the last century was it known that electricity is nothing but a flow of charged particles, which the scientist named electrons.

2. Not until the seventeenth century did man begin to understand pressure.

3. Not until mechanics of fluids, mechanics of solids and applied mathematics were sufficiently advanced was it possible to solve the main problems of flight mechanics.

4. The quantity of solar radiation received at outer layers of the earth's atmosphere on a unit of surface in a unit of time is called the solar constant. Its value has been estimated to be 1.94 cal/cm²/min. Not until this radiation is absorbed is heat liberated.

5. Tycho Brahe collected a vast number of individual observations about the motion of the planets and Kepler brought order into these by deducing from them his three laws, but not until Newton had proposed his law of universal gravitation, could a consistent³ scheme be built up.

6. Not until 1896 was it found that compounds of uranium emitted rays that affected⁴ a photographic plate covered with black paper.

7. The first extraterrestrial radio waves were discovered accidentally in the 1930. However, not until 15 years after the first observation did the science of radio astronomy begin to make noticeable progress.

9. Повторение. Переведите предложения, обращая внимание на перевод со слагательного наклонения (§ 34—40).

1. It has always been the hope of chemists and physicists that the atomic weight of all elements would prove to be whole numbers.

¹ trap — захватывать

² convincingly — с уверенностью

³ consistent — зд. логичный, стройный

⁴ affect — оказывать влияние

2. The continual increase of weight of the spacecraft might appear to be necessary to communicate over increasingly large distances.

3. It would appear to be certain that most important application of this device will not be on earth but outside our planet.

4. Although in principle a nuclear chain reaction might appear to be simple, for many years no nuclear reactions were known that had the needed self-propagating property.

5. Gas-cooled reactors would seem to be the most suitable for this purpose.

Лексические упражнения

10. Переведите предложения, содержащие глагол to feed (7,1). Укажите, от чего зависит выбор перевода глагола.

1. Originally the radio equipment and navigation lights were usually fed with electric current from small generators driven by the engine.

2. The unit burned liquid oxygen and a mixture of alcohol and water which were fed into the combustion chamber by special pumps.

3. In the case of the bevatron (a proton synchrotron) a special accelerator feeds protons into the machine at about 10 MeV.

11. Переведите предложения, содержащие слова одного словообразовательного ряда. Обратите особое внимание на многозначность существительного extent (7,7). Укажите, на значение каких слов вы опирались при выборе перевода этого существительного.

extent n; extend v, extended a, extensive a, extensively adv

1. Infra-red radiation emitted by hot bodies extends from about 0.1 mm down to 7,000 Å.

2. During the past year some success has been achieved in extending the range of spectrographic measurements into the soft X-ray region.

3. The evidence from observations of meteors appears to indicate that our atmosphere extends upward at least 500 miles.

4. Through experiments it has been determined that the maximum temperature at which a man can maintain efficiency for extended periods is 80° F.

5. Unfortunately, the period of visibility of a comet is generally too short to allow any extensive measurements.

6. These instruments are extensively used for alternating current measurements.

7. The extent of calculations involved in making Kepler's discoveries are quite surprising.

8. Hershel's (an astronomer of the 18th century) attempt to determine the extent of the Milky Way had largely failed.

9. The resistance varies to some extent with temperature.

10. Since all fluids possess viscosity at least to some extent, the analysis of most flow systems requires consideration of the various forces involved.

12. Переведите предложения, обращая внимание на перевод слов **neither** и **nor** (7,14).

neither... nor	ни... ни
neither a	никакой, ни один (из)
neither c_j	также не
nor c_j	также не

1. During the last thirty or forty years the attention of physicists has been turning increasingly toward such phenomena which could **neither** be discovered **nor** analysed without special experimental technique.

2. The upper atmosphere emits light of two kinds, but **neither** is visible by day against the background of the bright sky.

3. Liquid oxygen systems are not particularly difficult to service, **nor** are they usually dangerous, provided all the necessary safety measures are taken.

13. Переведите предложения, содержащие глагол **to add** и его производные. Обратите внимание на многозначность этого глагола (7,16).

1. To improve fuels light metals such as lithium, boron and beryllium are **added**.

2. If heat is **added** as the air passes through the tunnel, the air will expand to occupy the increased volume without suffering a loss of velocity.

3. To **add** large numbers is one of the performances of a computer.

4. Over 400 illustrations **add** to the value of this book.

5. The I. G. Y. (International Geophysical Year) cosmic ray program has **added** greatly to our knowledge of earth-sun relationship.

6. Through many experiments we received **additional** evidence on the influence of magnetic conditions in interplanetary space on the intensity of cosmic radiation.

7. In **addition** to providing efficient thrust in level flight, the propeller must be able to convert total engine power to thrust for take-off.

8. It is important to avoid high external radiation. In **addition**, it is important to prevent dangerous radioactive material from entering the human body.

14. Переведите предложения, обращая внимание на перевод выделенных несводимых словосочетаний.

along with (7,17)

1. The equipment comprises a sensitive radio receiver **along with** a highly directional antenna system.

2. Along with a long list of possible attractive characteristics of reactors, there are, unfortunately, certain dangerous points.

by virtue of (7,20)

3. Heat is the energy that a body possesses by virtue of the fact that its molecules are in motion.

4. The internal combustion engine is unlike a steam engine which works by virtue of the introduction of steam which has been raised externally in a boiler¹.

15. Переведите предложения, обращая внимание на то, что слово **subject** (7,26) может представлять собой различные части речи.

subject n

тема, вопрос, предмет

subject-matter

сущность, содержание

to be subject to (smth.)

подвергаться (чему-л.)

to subject to

подвергать воздействию (чего-л.)

1. In writing this book the width of the **subject** has prevented the details from being presented.

2. The book was concerned with the **subject-matter** of natural science and its applications.

3. An instrument which reads correctly at one frequency may be **subject to** considerable errors at other frequencies.

4. Physical phenomena occurring on the earth are **subject to** complex influences, partly of solar origin.

5. Certain static fluids are **subjected to** accelerations.

6. We can now liquefy all known gases by **subjecting** them to high pressures and cooling them by expansion.

16. Переведите предложения, содержащие обороты **this is the case**, **such is the case** «это имеет место»; **as is the case** «как это имеет место» и **this is not the case** «это не так» (7,28).

1. When the magnetic field is produced by more than one charge, **as is** usually the case, the resultant force must be obtained by a vector summation of the forces due to individual charges.

2. Every material body is made either of an element or of a combination of two or more elements. Almost always, **the latter is the case**.

3. The realization of space flight is closely connected with the development of suitable power plants and propulsion systems. **Such has been the case** for the development of aircraft and missiles, and to a certain extent, **such is the case** for space flight.

4. The word "atom" means "indivisible" and at the time this term was invented atom was believed to be the smallest unit. Though **this is** now known **not to be the case**.

5. Since Venus is the nearest of the planets it should logically be an easy object to study. Unfortunately, **this is not the case**.

¹ boiler — котел

17. Переведите предложения, обращая внимание на многозначность слова **once** и сочетаний с ним (7,29).

once <i>adv</i>	однажды, один раз, когда-то
once <i>more</i>	еще раз
once <i>if</i>	если, когда
at once	сразу

1. The Earth revolves in its orbit **once** a year and also rotates uniformly on its axis¹ **once** a day.

2. Earth and Moon travel together, making a complete trip around the Sun **once** a year.

3. Heat was **once** considered as being a fluid.

4. The rare² earth elements are a group of 15 elements whose position in the periodic table was **once** considered exceptional.

5. **Once** a space vehicle is in its orbit, the crew will no longer experience the Earth's gravitational pull and will be weightless.

6. It is surprising how simple many problems of physics become **once** the meaning of each concept involved is completely understood.

7. At ordinary atmospheric pressure helium, **once** liquefied, remains liquid to the lowest temperature that can be reached.

8. Before taking off the pilot checked³ his controls **once more**.

9. The thrust magnitude and direction are **at once** known in terms of the motor performance.

10. It should not be thought that Newton's theory of gravitation was **at once** universally accepted.

18. Переведите предложения, обращая внимание на перевод оборота **as far as** (*so far as*) **smth. is concerned** (7,30) «что касается», «поскольку речь идет о».

1. Although gamma rays are electromagnetic radiation, they behave (certainly, **as far as** ionization is concerned) as though they were minute particles of energy, called photons.

2. A direct current flows continuously through a circuit in one direction only, although it may not be steady **so far as** magnitude is concerned.

3. **So far as** fluid mechanics is concerned, the main difference between liquid and gaseous states is in their relative compressibility.

4. The force of gravity enters into the design of airplanes because part of the thrust is used to maintain lift and this force is thus lost in **so far as** the forward motion is concerned.

¹ axis — ось

² rare — редкий

³ check — проверять

19. Переведите предложения, содержащие существительное **art** (7,33) и его производные.

1. Applications of solid propellant rockets to long-range missiles, guided missiles and boosting have grown with the continuing improvements in the **art** of rocketry.

2. Radar has been defined as "the **art**" of detecting by means of radio echoes the presence of objects, determining their direction and range, recognizing their character and employing the data thus obtained.

3. This paper will attempt to review the **state-of-the-art** in the field of orientation and stabilization of satellites.

4. The launching of the first **artificial** Earth satellite was of great value for space research and exploration.

5. **Artificially** radioactive materials, made available through the use of nuclear reactors, have proved extremely valuable.

20 Повторение. Переведите предложения, обращая внимание на перевод выделенных словосочетаний с глаголом:

to set into motion, to come into play, to come into operation, consideration is given, reference is made, care is taken, mention is made, emphasis is placed, account is taken, it takes smb. to do smth.

1. When electrons in a conductor are **set into motion** by the action of an alternating emf, their acceleration leads to the emission of radio waves.

2. When two surfaces are in contact and one moves over the other, a force opposing the motion **comes into play**.

3. Solar and cosmic noise may become the main source of signal interference when ultrasensitive receivers **come into operation**.

4. The speed of sound is the time it **takes** for sound **to travel** from its source to its receiver.

5. Careful **consideration** must be given to the frictional losses of the mechanism.

6. The present paper deals mainly with B.B.C. Television, although **reference** has been made where necessary to other major developments in this field both at home and abroad.

7. Care has always to be **taken** to avoid contact of liquid oxygen with any combustible material.

8. Emphasis is **placed** on the physical understanding of rocket behaviour as well as on the mathematical formulation of the theory.

9. Mention has already been made of the ionosphere which is a storehouse of free energy.

10. In considering real fluids account must be **taken** of the shearing force¹ required to overcome viscosity.

¹ shearing force — срезывающее усилие

Словообразовательное упражнение

21. Переведите следующие слова, учитывая, что префикс pre- означает предшествование, а post- — последующее событие:

pre-war, pre-arrange, prehistoric, pre-human, preheat, post-war, post-graduate

Упражнения на перевод терминов

22. Переведите термины, состоящие из сложного прилагательного с окончанием -ed и существительного. Дайте сначала описательный перевод, а затем установите, какой термин в русском языке выражает это понятие в указанной области техники.

four-engined airplane
↓
снабженный чем? ← самолет
↓
четырьмя двигателями
четырехмоторный самолет

Английский термин	Область применения
four-bladed airscrew	двигатели
long-nosed airplane	авиация
double-walled chamber	двигатели
thin-walled tanks	авиация
air-cored ¹ transformer	электротехника
air-spaced transformer	»

23. Переведите термины, вторым компонентом которых является прилагательное proof (пишется слитно или через дефис со стоящим впереди существительным).

В таких сочетаниях proof имеет значение «зашщенный (от)», «непроницаемый (для)».

acidproof material
↓
какой? → материал
↓
для чего? ← непроницаемый
↓
для кислоты
кислотоупорный материал

¹ core — сердечник

Английский термин	Область применения
shockproof device	авиация
airproof cabin	»
explosionproof reactor	ядерная физика
waterproof case	машиностроение
foolproof adjustment	телевидение

Упражнения в чтении

24. Прочитайте следующие слова, соблюдая правила чтения буквосочетаний *ai* и *aw*:

[ɔ:] launch, pause, cause, automatic, because, exhaust, draw, raw, law

25. Прочитайте следующие слова с префиксами *pre-* и *post-*, соблюдая правильное ударение:

'pre'-war, 'pre-a'rrange, 'pre'heat, 'prehis'toric, 'post-'war, 'post-'graduate

26. Прочитайте следующие слова, соблюдая правильное произношение окончания *-es*:

[iz]

[s] или [z]

boxes	charges	machines	failures
cases	analyses	tapes	schedules
devices	processes	games	alternatives
changes	languages	engines	estimates

27. Прочитайте следующие слова из основного текста:

schedule ['sedju:l] programming ['prougræmɪŋ]

processing ['prousesɪŋ]

routine [ru:tɪn]

labour ['leɪbə]

virtually ['və:tjuəli]

program ['gra:əm]

alternative ['ɔ:l'tɜ:nətɪv]

28. Прочитайте следующие предложения, содержащие инверсию. Соблюдайте указанные паузы.

1. Shown on the photo | is part of a data-processing machine...
2. Perfect as modern computers are, | they cannot be called brains ...
3. Not until a program is prepared | does a computer perform any conversiōn ...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. CRYOGENIC PROPELLANTS

(Для перевода без словаря)

At ordinary temperatures hydrogen and oxygen, and some other potential propellants, for example fluorine, are gases and not until they are in a gaseous state do they undergo chemical reaction in the rocket engine. But in the gaseous form they have

such low densities that it would require extremely large tanks to store them in the rocket vehicle. The storage of propellants in the gaseous form is thus completely impractical. It is for this reason that the substances mentioned above are stored as liquids at very low temperatures; they are consequently referred to as "cryogenic propellants" (from "Kryos" — "ice cold" in Greek).

In the liquid form, the densities are much greater than in the gaseous state, and consequently the propellant tanks can be much smaller and less massive. This advantage is offset², however, by the low temperature required, so that liquid hydrogen, liquid fluorine, and liquid oxygen cannot be stored in the rocket tanks for long periods of time, nor can they be used without special precautions³.

Such nonstorable, cryogenic propellants must be loaded into the tanks shortly before the rocket is launched.

The cryogenic liquids are made by simultaneously⁴ compressing and cooling the gases to the required low temperature. They are then stored and transported, with moderate⁵ loss, in special vacuum-jacketed tanks. These containers are designed on the same principle as the familiar vacuum-bottles⁶ used to store hot or cold liquids in the home.

Here you can see the temperatures at which a number of cryogenic liquids, of possible use as propellants, liquefy⁷ at ordinary atmospheric pressure. These temperatures represent the conventional boiling points⁸ of the various liquids. By increasing the pressure in the container the boiling points can be raised to a certain extent, so that the liquid form can exist at somewhat higher temperatures. It can be seen, however, that the temperatures required to produce and store cryogenic propellants are extremely low by normal standards.

Boiling points of cryogenic propellants

Substance	Density (grams/cu cm)	Boiling points	
		° C	F
Hydrogen	0.07	-253	-423
Oxygen	1.1	-183	-298
Fluorine	1.5	-188	-307

In order to avoid the problems associated with cryogenic propellants and to make rockets ready for launching at all times, storable liquid propellants have been developed.

¹ cryogenic — криогенный, с глубоким охлаждением

² offset — сводить на нет

³ precautions — меры предосторожности

⁴ simultaneously — одновременно

- ⁵ moderate — умеренный, небольшой
- ⁶ vacuum-bottle — термос
- ⁷ liquefy — превращаться в жидкость
- ⁸ boiling point — точка кипения

2. NEUTRON PHYSICS

(Для перевода со словарем)

Although chemists, physicists and mathematicians had been learning about the atomic structure of matter for generations, a short thirty years ago the neutron had no place in their thinking, for it was unknown. But so important is this particle in to-day's physics that a whole field of research — neutron physics — is based on its properties. And this new branch of science, young as it is, touches on so many important practical applications, that it actually is much more than a single field of endeavour.

How can it be that within thirty years this bit of matter has proved to be so versatile? Another and very similar particle, the proton, although known much longer, has produced nothing comparable to the feat of neutron. There is no field of research called "proton physics" in spite of the fact that the fundamental properties of the proton have been familiar for a long time. In structure the proton and the neutron are much alike. They differ primarily in that the proton bears a positive electrical charge, while the neutron is electrically neutral. Yet this apparently rather trivial difference — the lack of an electrical charge — is the underlying source of the astonishing diversity of neutron physics.

After World War II the neutron's functions in fields beneficial to man advanced rapidly — so rapidly, in fact, that within a few years the peacetime uses of atomic energy became a matter of international organization. In 1955 the first worldwide Atoms for Peace Conference was held in Geneva, and the great wealth of technical material presented at this conference on nuclear power was definite proof of the stature of the neutron in the field of practical accomplishments.

Yet important as these practical matters are — the production of electrical power, motive power for ships, and radioisotopes for medical and industrial uses — it is the function of the neutron in pure research that we shall consider first.

In basic research we are dealing with the laws that are fundamental to all matter, whether in the small world of the atom or in the astronomical scale of galaxies. The neutron, being a basic building block of all matter, is of particular importance in the discovery and understanding of these fundamental laws. Still more fruitful, however, are its interactions with other particles and with bulk matter; they reveal in many sensitive ways the most basic relationships among the ultimate particles underlying the structure of all things.

3. WHAT IS HOLOGRAPHY

(Для перевода со словарем)

Holography and photography are two ways of recording on film, information about a scene we view with our eyes. Yet, how different is the basic mechanism by which they accomplish their purpose, and how different are the images which result. As the words "holo" (complete) and "gram" (message) connote, the hologram captures the entire message of the scene in all its visual properties, including the realism of three dimensions.

As early as 1839 a French scientist Daguerre succeeded in recording the image formed on the ground glass screen of a much older invention, the "camera obscura", a device to assist artists in drawing more lifelike pictures of the scene before them.

Not until 1947 did the British scientist, Dennis Gabor, conceive of holography, a new and ingenious method for photographically recording a three-dimensional image of a scene.

Although Gabor conceived his idea rather recently, he was still too early, for the special kind of light needed to demonstrate the full capabilities of holography, a single-frequency form called "coherent" light, was not available in abundance in 1947. It became available only after the laser, a new light source first demonstrated in 1960, was developed.

The first optical scientist in the S. U. who turned his attention to Gabor's holography and began independent experiments for the development of more sophisticated holographic systems was Yu. N. Denisyuk. By his experiments with Lipmann emulsions in 1962, he established a completely new orientation in the field of holography, completely different from Gabor's and related schemes.

The advantages of holographic methods of information processing lie in the fact that in holography the initial information is processed in its entirety and almost simultaneously throughout the entire field. Such operations as scanning or spreading the image into lines, which are necessary in electron systems are completely eliminated in the coherent optical system. Holography, which enables one to obtain a complete optical wave record, presents the experimenter with new and unusual possibilities, which force one to review many of the methods of physical optics and techniques of physical experiment. The most interesting possibility consists in the following: the observer may correct the optical properties of the object used in the experiment after the experiment is completely finished. Thus, for instance, a three-dimensional scene may be brought into sharp focus over an arbitrary depth. It is also possible to translate the observation point, to perform optical filtration of the spatial structure of the object and, in particular, to remove the aberrations of the optical image-forming system. However, the most astounding property of holography is that it allows one to perform interference between two light beams which

are not superimposed either in time or in space. Using the complete recordings of light with retention not only of amplitude but also of phase, it is possible now, using holography, to perform a wide variety of mathematical operations on complex functions.

The technological applications of holography — the utilization of the real image for purposes of testing, processing and manufacture — are just beginning to be developed. Nevertheless, they possess a great future.

Holography applications:

Three-Dimensional Photography	Photography	Technology
Image photography		Surface application of complicated microimages
Photogrammetry		Microfinishing
Contour photography		Imaging through distorting media
Pulsed-laser photography of moving objects		Observation of the walls of incorrect shape
Underwater photography		Image-coding
Sound vision		Observations in a turbulent atmosphere
Radio vision		
Microwave antenna modeling		
Image Recognition		Microscopy
Reading of prints and manuscripts		Three-dimensional observation of living micro-objects
Three-dimensional object recognition		X-ray microscopy
Aerial photograph analysis		Electron microscopy
Associative (correlative) search		
Volume Holograms		Cinematography
Wave photography		Three-dimensional projection systems
Memory systems of high capacity with an associative choice		
Interferometry		Television
Measurement of complex-surface vibrations		Transmission of holograms over distances
Measurement of unfinished complex-surface deformations		
Three-dimensional phase objects.		
Aerohydrodynamics		Optics
Interferometric measurements		Compensation of lens aberrations
Nondestructive testing		Lensless optics
		Combined lens-holographic aberrationless systems

4. TRANSISTORS — VERSUS VACUUM TUBES

(Для перевода со словарем)

Rapidly advancing technology, especially that related to missiles, satellites and electronic computers has made critical the need for smaller electronic components. Tubes have been miniaturized, printed circuits have replaced wiring on a chassis and crystal triodes and tetrodes referred to as transistors are performing many jobs formerly done by vacuum or gas tubes.

Before 1948 the transistor was unknown and electronics with a few exceptions was based chiefly on the vacuum tube which in various ways supplied us with the indispensable stream of electrons for our instrumentation.

The transistor development in many ways repeated—and often excelled—the history of the vacuum tube. It did away¹ with the heated filaments and cathodes and, consequently, with the uneconomic heating currents. Instead of the vacuum tube's "hot" electrons, the transistor works with free "cold" electrons.

Where transistors are used in place of thousands of tubes in giant electronic computers, the reduction of heat generated is extremely important, not only for more efficient, and dependable circuit operation but also for considerable reduction of cooling capacity required in some installations.

Nor does the transistor require the high voltages needed by the vacuum tube for its best functioning. Less than 15 volts is required in the average transistor radio set, in contrast to the 115 to 300 volts of the vacuum tube receiver.

Great as the transistor's progress has been to date, its evolution has but begun. In the beginning, great difficulties in manufacture were encountered. Over 80% of all assembled transistors were rejected. This trouble has now been mostly overcome.

Vacuum tubes wear and break. Transistors are most rugged and so far no one has determined how long they will last. A probable life may be 50 years.

New uses for transistors are found daily. Research in practically every endeavour and art requires advanced and specialized types. Take, for instance, space electronics. One cannot well imagine a modern rocket or a satellite without a variety of transistors because they are shock-proof, rugged, have minimum weight and minimum dimension.

¹ do away (with smth.) — покончить (с чем-л.), отказаться (от чего-л.)

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Чем может быть выражена смысловая часть сказуемого (в случае инверсии), стоящая на первом месте в предложении

(Shown on the photo are... Revolving around the nucleus are... Of great importance to navigation are ...) ? Укажите последовательность перевода слов в предложении с инверсией такого типа (§ 94).

2. Как располагаются части сказуемого по отношению к подлежащему в тех случаях, когда на первом месте стоят обстоятельственные слова типа **never before**, **only** и т. п.? (Only in this century have we found...). Укажите последовательность перевода слов в предложении с инверсией такого типа (§ 95).

3. Как переводятся союзы **nor**, **neither** и **so**, если за ними следует предложение, содержащее инверсию (§ 96)?

4. Укажите способ перевода уступительного предложения (содержащего инверсию), в котором союзы **though** или **as** стоят после прилагательного (Familiar as the process may be...) (§ 97).

5. От чего зависит перевод служебного слова **not until** (упр. 8)?

6. Укажите значения слова **once** (упр. 17).

7. Какое значение имеют префиксы **pre-** и **post-** (упр. 21)?

УРОК ВОСЬМОЙ

Текст: Semiconductors.

Грамматические основы перевода

Перевод несвободных словосочетаний с существительным и другими частями речи (§ 56—66). Перевод выделительной конструкции типа *It was not until ... that (when)* (§ 99). Выделение сказуемого с помощью глагола *to do* (§ 98).

Лексические основы перевода

Зависимость перевода глагола-сказуемого от лексического значения подлежащего (упр. 13).

Перевод слов: *account for, pure, trace, average.*

Перевод слов с префиксами *semi-, trans-, non-* (упр. 17).

Перевод терминов типа «существительное + причастие I (или герундий) + существительное», «существительное + причастие II + существительное» (упр. 18).

ТЕКСТ

SEMICONDUCTORS

The group of substances known as **semiconductors**¹ has, in recent years, played such a major part in the advance of our knowledge of the electrical, optical and mechanical properties of solids, that it has an importance as a class of materials comparable with that of metals. In addition, because of their **unique**² properties, semiconductors are widely used in modern electronic techniques, for example, in **rectifiers**³, transistors, thermopiles* and **non-linear**⁴ resistors.

A great deal of experimental work had been carried out on semiconductors before any satisfactory theory had been **put forward**⁵ to account for⁶ their properties. This is no longer surprising⁷ when we realize that it requires the quantum theory in the form of wave mechanics to account for even the most elementary properties of semiconductors. Semiconductors are by

* thermopile — термоэлектрический элемент

no means⁸ simple and have some rather unique properties. It was not until after this theory had been applied to the motion of electrons in crystalline solids that a satisfactory theory of semiconductors emerged⁹. It was not until this theory was available that a satisfactory definition of a semiconductor could be given.

A brief and elementary account is given here of the mechanism for conducting various kinds of matter. The fundamental ideas underlying this process will be discussed only at some length¹⁰.

It is known that in electrolytes and in gases conduction occurs owing to¹¹ the motion of ions, that in metal conduction takes place on account of the motion of electrons, and as for insulators there is no conduction at all, but only a slight displacement¹² of the charges within¹³ the atoms themselves. There is still another kind of matter in which conduction does take place by virtue of electrons just as in metals, but, as distinct from¹⁴ the behaviour of metals, a substance of this kind exhibits an increase of resistance as the temperature falls. Such a substance is called a semiconductor and at the absolute zero¹⁵ of temperature it would be an insulator.

On the whole¹⁶, the variation of resistance with temperature is explained as follows: in a metal only a very few electrons are free to move upon the application of a potential difference, and as the temperature of the metal is lowered, the thermal vibration of its atoms is reduced, with the consequence that the atoms interfere¹⁷ less with the motion of the electrons, and as a result the resistance is lowered. These electrons free to move in a metal are in semiconductors bound loosely¹⁸ to the atoms. At absolute zero a semiconductor has no current carriers; as the temperature is raised, more and more of the loosely bound electrons are released by thermal energy and conduction is improved, that is, the resistance is lowered as the temperature rises.

The current carriers in semiconductors may be supplied by an impurity¹⁹. For example, an arsenic impurity in silicon supplies one loosely bound excess electron for each atom of arsenic dissolved²⁰, and, hence, conduction is due to a transfer²¹ of excess electrons; such a semiconductor is said to be of n-type, because the carriers are negative. A trace²² of boron in silicon, on the contrary²³, removes²⁴ one electron for each atom of boron dissolved and the "hole"²⁵ left in the electronic structure of a silicon atom provides a type of conduction called hole or defect²⁶ conduction. This type of conduction occurs due to the transfer from atom to atom of electrons into available holes. A semiconductor in which the conduction is due to holes is said to be of p-type, because the carriers act like positive charges.

For the time being²⁷ two semiconductors, germanium and silicon, are of special interest as they form the basis of the

transistor — an electronic amplifier²⁸ — in which the amplified current is emitted and transported within the semiconducting solid. As long as transistors are constructed of solid material, they can be produced in smaller size as compared with²⁹ tubes³⁰ of corresponding electrical performance, are more rugged and reliable, and are freer from microphonics*.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, обращая внимание на перевод словосочетаний со словом **as**:

as to, as for «что касается (чего-л.)», «в отношении (чего л.)», as far as, so far as «плаколько», «поскольку»; as long as, so long as «поскольку», «пока»; as follows «следующим образом»; «следующие»; as yet «еще»; as soon as «как только»; as well as «как ... так и»; as well «также»; as if, as though «как если бы» (§ 60). Запомните эти словосочетания.

as to, as for

1. Substances when classified **as to** their magnetic behaviour form three groups.

2. This text will treat electronic devices **as to** their properties.

3. **As for** the resistance of connecting wires, we may consider it later.

4. **As for** the size of the device, it was given in the first chapter.
as far as, so far as

5. **As far as** we know the rocket is the only means of propulsion for space ships.

6. **So far as** we know this planet has no atmosphere.
as long as, so long as

7. Alpha particles continue to exist only **as long as** they move fast enough to avoid collecting electrons.

8. Boyle's law states that the product of the pressure by the volume of a given mass of gas is constant **as long as** the temperature does not change.

9. The ramjet provides a very satisfactory engine **as long as** the missile remains at an altitude where there is sufficient oxygen.

10. **So long as** there is relative motion between a conductor and a magnetic field, a voltage will be generated in the conductor.

11. **So long as** a nucleus remains whole, the surface tension forces are obviously holding the forces of electrical repulsion under control.

as follows

12. Characteristics required from a rocket engine are **as follows**: a tremendous liberation of energy, high operating pressures and temperatures and unusual propellant flow rates.

* microphonics — шумы, помехи

13. The preceding discussion may be summed up as follows: the same atoms that occur on the Earth are to be found in the remotest parts of the Universe.

as yet

14. As yet we have not spoken of the speeds at which the spaceships will travel in the interplanetary orbits.

as soon as

15. As soon as the iron is removed from the magnetic field, it loses its magnetism.

16. The space vehicle and the cosmonaut become weightless, as soon as the lift and drag vanish¹.

as well as

17. Angular velocity and angular acceleration have direction as well as magnitude.

as well

18. Neutrons not only cause fission; they produce other effects as well.

as if, as though

19. It was found that many substances, when placed in the path of cathode, would fluorescence as if they were being exposed to invisible, ultra-violet light.

20. Gamma rays behave as though they were minute particles of energy, called photons.

2. Переведите предложения, обращая внимание на перевод словосочетаний со словом so:

so as to «так чтобы», «с тем чтобы»; so that «так что», «так чтобы»; so far «до сих пор»; or so «или около этого»; and so on, and so forth «и так далее» (§ 61). Запомните эти словосочетания.

so as to

1. The fuel used in the internal combustion engine is gasoline, which is mixed with air in a carburetor so as to form an explosive mixture.

2. Our definition of vertical flight will be elastic so as to include aircraft that can operate from small ground areas even if they do not rise or descend quite vertically.

so that

3. The object of physics is to determine exact relations between physical phenomena so that the sequence of events can be clearly understood and definitely predicted.

4. Every particle of a body possesses weight, so that the pull of the earth on the body is made up of a large number of forces directed toward the centre of the earth.

so far

5. All of the propellants so far discussed have one characteristic in common — a low boiling point.

¹ vanish — исчезать

6. So far we have dealt with power needed to operate the radio transmitter.

7. Liquid hydrogen is the best propellant for the nuclear rocket found so far.

or so

8. There are about a hundred elements. These hundred or so elements combine in various ways to produce the innumerable different substances.

9. For the last one hundred years or so the world's consumption of fuels such as coal, oil and natural gas has greatly increased.

and so on, and so forth

10. The technical unit of force is the "dyne". However, force may also be measured in more common units, such as pounds, kilograms and so on.

11. In the atmospheres of the major planets there is no trace of hydrocarbons such as acetylene, ethane, ethylene and so forth.

12. On the Earth, outside forces that slow down moving objects include friction with the surface, friction with air, collision¹ with other objects, and so forth.

3. Переведите предложения, обращая внимание на перевод несвободных слов-восочетаний — with respect to (smth.), with (in) reference to (smth.), as regards (smth.), with (in) regard to (smth.), выполняющих функцию предлога. Все они имеют одинаковое значение «в отношении» (§ 62).

with respect to (smth.)

1. Secondary electrons vary widely with respect to energy.

2. Acceleration is the rate of change of velocity with respect to time.

3. The Earth's constant revolution causes slight changes every day in the position of each hemisphere with respect to the sun.

with (in) reference to (smth.)

4. Relative wind is the motion of the air with reference to an object.

with regard to (smth.), in regard to (smth.)

5. We are to-day so familiar with certain ideas in regard to the Earth, the Sun and other members of our solar system that we forget that these conceptions are really not so very old.

6. In regard to the size of an electrical conductor, the resistance is found to be directly proportional to the length of the conductor and inversely proportional to its cross-sectional area.

7. The close similarity of Venus and the Earth with regard to size and mass means that the surface gravities must be much the same.

¹ collision — столкновение

8. Having made a decision **with regard to** interplanetary trajectory to be followed, it will be necessary to consider the mode of entry into this trajectory.

as regards (smth.)

9. As a result of previous investigations, we may say that isotopes have different atomic weights but are identical **as regards** all their other chemical properties.

10. **As regards** the dark regions of Mars, they are found to undergo seasonal variations.

11. Barometer was at the time of its introduction considerable step forward **as regards** the ultimate¹ sensitivity achievable.

4. Переведите предложения, обращая внимание на то, что приведенные не-свободные сочетания выступают в функции предлогов и имеют значение «благодаря», «в силу», «ввиду», «из-за»:

because of (smth.), **due to** (smth.), **in(by) virtue of** (smth.), **in view of** (smth.), **on account of** (smth.), **owing to** (smth.), **thanks to** (smth.)

because of (smth.)

1. **Because of** the very low density, it is difficult to measure directly the temperature of the upper atmosphere.

2. **Because of** the high consumption of the rocket motor, the propellant is always a high percentage of the all-up weight of the vehicle.

due to (smth.)

3. The actual distance of the Earth from the Sun varies nearly 3 million miles **due to** the eccentricity of the Earth's orbit.

in (by) virtue of (smth.)

4. That property **in virtue of** which a body offers resistance to a change in its motion is called inertia.

5. Normally, radio-waves of the short wave-band, lying between 10 and 20 meters, are reflected by the high-lying F-layer, **in virtue of** its concentration of free electrons.

in view of (smth.)

6. **In view of** the existence of isotopes it is necessary that atoms have two numbers with the chemical symbols to show exactly which atom variety is meant.

on account of (smth.)

7. The flow of a gas is a more complex problem than the flow of liquids **on account of** the great compressibility of the former.

8. The Earth's atmosphere exerts a pressure **on account of** its weight in the same way as liquids do.

owing to (smth.)

9. **Owing to** its great mass, Jupiter has a very marked effect upon the motions of other members of the solar system including the asteroids and comets.

¹ ultimate — конечный, окончательный

10. Owing to the eccentricity of the orbit the average distance of Mars from the Earth is reduced from 141 million miles to 129 million miles when Mars is closest to the Sun.

thanks to (smth.)

11. We are familiar with the principles of the equilibrium of levers¹ thanks to the ancient Greeks.

5. Переведите предложения, обращая внимание на то, что предлоги *apart from* (smth.) и *aside from* (smth.) имеют значение «помимо», «кроме (чего-л.)».

apart from (smth.)

1. *Apart from* the ninety-two elements in nature a few have been created by scientific processes.

2. *Apart from* determining the structure of the atom, Rutherford's experiments led to a number of other important discoveries.

3. During the process of fission of uranium, *apart from* the large fragments, a number of neutrons is also released.

aside from (smth.)

4. The choice of exit nozzle shapes, *aside from* thermal considerations, is primarily determined by internal and external factors.

5. *Aside from* supplying power, the development of atomic energy has brought many other important benefits².

6. Переведите предложения, содержащие несвободные словосочетания, близкие по смыслу и выполняющие роль предлогов:

along with (smth.), *combined with* (smth.), *in conjunction with* (smth.), *together with* (smth.). Все они переводятся словами «наряду с (чем-л.)», «вместе с (чем-л.)» (§ 62)

along with (smth.)

1. The Earth circles around the Sun **along with** eight other sizable planets.

2. **Along with** its performance advantages, there are several disadvantages that must be stated in connection with airbreathing engines.

3. Particle accelerators may be used for the generation of powerful X-rays, which, **along with** the radio-isotopes, have many applications in therapy and diagnostic work.

combined with (smth.)

4. The interest in nobelium is due to its nuclear properties **combined with** its corrosion resisting characteristics.

5. A need exists for airborne electronic equipment of minimum size and weight **combined with** utmost reliability.

in conjunction with (smth.)

6. The air speed indicator is used **in conjunction with** the sensitive altimeter.

¹ lever -- рычаг

² benefit — преимущество, выгода

7. The radiation received on the Earth from the planets can be measured with the aid of a large telescope **in conjunction with** a sensitive detector of radiation.

8. The sensitivity of a phototube **in conjunction with** a voltage amplifier is so great that it may be used to study the light from stars.

together with (smth.)

9. The space ship Vostok weighed, **together with** the cosmonaut, 4,725 kg.

10. Physics is concerned broadly with matter and energy, **together with** such related quantities as force and motion.

11. High velocity rocket missiles usually require a large ratio of total impulse to total weight **together with** a small frontal area.

7. **Переведите предложения, содержащие несвободные словосочетания, выступающие в функции предлогов:**

at the expense of (smth.) «за счет (чего-л.)»; **as distinct from (smth.)** «в отличие от (чего-л.)»; **irrespective of (smth.)** «независимо от (чего-л.)»; **in spite of (smth.)** «несмотря на (что-л.)»; **previous (prior) to (smth.)** «до», «перед (чем-л.)»; **as compared with (smth.)** «по сравнению с (чем-л.)»; **in contrast to (smth.), contrary to (smth.)** «в противоположность (чему-л.)»; **according to (smth.), in accordance with (smth.)** «согласно (чему-л.)»; **«в соответствии с (чем-л.)»** (§ 62).

at the expense of (smth.)

1. The simplicity of the rocket power unit is obtained **at the expense of** economy of fuel consumption.

2. Work is done by heat engines **at the expense of** the kinetic energy of molecules which have been heated.

3. If no energy is supplied to the gas during expansion, the work will necessarily be done **at the expense of** the internal energy of the gas, and as a result its temperature will fall.

4. Lightness of the airplane structure **at the expense of** strength is dangerous.

as distinct from (smth.)

5. A rocket motor is a heat engine, that is, a machine to convert heat into mechanical movement, **as distinct from** the electric motor, the water turbine, etc.

6. In previous chapters mention has been made of the motion of rotation **as distinct from** the motion of translation.

irrespective of (smth.)

7. Isotopes of an element are atoms whose nucleus has the same net charge, **irrespective of** the number of neutrons.

8. The statement that all objects, **irrespective of** mass, fall with the same acceleration is a result that follows readily from Newton's universal law of gravitation.

in spite of (smth.)

9. **In spite of** its small mass a meteor may carry considerable kinetic energy.

previous (prior) to (smth.)

10. Previous to the discovery of the neutron, all atom nuclei were assumed to consist of protons and electrons.

11. Rockets were largely experimental in nature **prior** to the past war.

as compared with (to) (smth.)

12. There are many stars which give out energy at the rate of 10,000 ergs per gram **as compared** with the Sun's 2 ergs per gram.

13. Mars reflects 59 per cent of the light falling on it, **as compared with** only 7 per cent for the Moon.

in contrast to (smth.), contrary to (smth.)

14. The operation of the rocket motor is independent of the speed of flight, **in contrast** to the other jet systems in which the speed is limited by internal aerodynamic considerations.

15. **Contrary** to common belief jet engine is not a modern development.

according to (smth.), in accordance with (smth.)

16. When astronomers classify the stars **according to** their apparent brightness, they use the word magnitude.

17. The elements are arranged in a table **in accordance with** their atomic number.

8. Переведите предложения, содержащие несвободные словосочетания с существительными part, time, date (§ 57—59):

for the most part «главным образом», «по большей части»; in part «частично»; on the part of (smth.) «со стороны (кого-л.)»; at times «изогда»; for the time being «в данное время»; it time «вовремя»; up to date «современный»; out of date «устаревший»; to date «до настоящего времени»

for the most part

1. The smallest dust particles, called micrometeorites, are concentrated **for the most part** in the plane of the Earth's orbit.

2. In the following pages we shall **for the most part** discuss the fundamentals of space medicine, with some added remarks about astrobiology.

3. So far we have been discussing, **for the most part**, motion in a straight line.

in part

4. Electrically charged bodies lose their charges, **in part** at least, as soon as they come into contact with conductors.

5. The performance of a ramjet engine depends, **in part**, upon its flight speed.

6. After leaving the combustion chamber the gases consist **in part** of heated air and, **in part**, of the burnt products of combustion.

on the part of

7. Supersonic flight demands great skill **on the part of** the pilot.

8. Naturally occurring types of energy are those available without any action **on the part of man.**

at times

9. It is true that Venus **at times** comes closer to the Earth than Mars.

10. When the orbit of Venus lies outside the orbit of the Earth, the planet is, **at times**, visible throughout the night.

in time

11. The results of the experiments were received **in time**.

12. All the maintenance and repair work of engine parts should be made **in time**.

for the time being

13. **For the time being** it is convenient¹ to disregard the resistance in the wires.

14. **For the time being** we shall not consider the problems associated with the calculation of trajectories of rockets.

up to date

15. The whole treatment of the subject in this book is **up to date**.

16. The plant was provided with all the necessary **up to date** machinery.

out of date

17. As the device was rather **out of date** it was decided not to install it on the new experimental model.

to date

18. **To date** little is known of the surface conditions of Venus.

19. All reactors **to date** have been designed to use either uranium 235, uranium 238 or plutonium 239 as a fuel.

9. **Переведите предложения, обращая внимание на перевод несвободных словосочетаний:**

In common «общий»; *at length* «подробно»; *by now* «к настоящему моменту»; *by then* «к тому времени»; *on the average* «в среднем»; *now* that «теперь, когда»; *on the whole* «в целом»; *except for* «за исключением»; *no longer* «больше не»; *a great deal*, *a good deal* «много»; *in turn* «в свою очередь»; *once more* «опять», «еще раз»; *at once* «сразу»; *one another*, *each other* «друг друга».

in common

1. Liquids and gases have one property **in common**: they are both able to flow.

2. Jupiter, Saturn, Uranus have so many characteristics **in common** that they may well be treated together.

at length

3. The electromagnet spectrum will be discussed **at greater length** in chapter 29.

by now

4. **By now** many types of powerful atom smashers have been built and are in operation.

¹ convenient — удобный

by then

5. By then the results of the Curies' work became known among those interested in their experiments.

on the average

6. It was calculated that an actual collision between two stars can occur on the average only once in 600,000 billion years.

now that

7. Now that the first manned space flight has been made, the dream of space travel is becoming a reality.

8. Now that the Soviet Automatic Interplanetary stations have reached Venus we are able to get a wealth of information of this interesting planet.

on the whole

9. On the whole the atom is electrically neutral.

except for

10. Except for the Sun and the Moon, Venus is the brightest object in the sky.

11. Except for Mercury, Venus, and probably Pluto, each of the planets has at least one satellite.

no longer

12. The investigations described no longer permit any doubt as to the atomistic nature of electricity.

a great deal, a good deal

13. A great deal of preparatory work has to be done before starting the real experiment.

14. Analogue computers are being used a great deal in work on guided missiles and also in solving aeronautical design problems.

15. We have said a good deal about automatic analogue computers and automatic digital computers.

in turn

16. The mechanical energy is used to drive a machine and the machine in turn does work.

once more

17. Due to the copper shortage during World War II, silver was used in the electric wiring of several war plants in the U. S. A.; after the war, when copper became available once more, the silver was replaced by copper.

at once

18. Atomic number gives at once the number of protons in the nucleus and the number of electrons outside the nucleus.

one another, each other

19. From Einstein's relativity theory we can conclude that mass and energy are not conserved separately but can be transformed into each other.

20. In the ideal gas, it is supposed that the molecules exert no force upon one another.

10. Переведите предложения, в которых глагол-сказуемое выделяется с помощью глагола *do*.

Заметьте, что при переводе такой конструкции перед глаголом добавляются усиливательные слова «действительно», «на самом деле», и др. Исключением являются случаи, когда в предложении есть другие слова со значением, близким значениюм указанных модальных слов (например: *certainly*, *Indeed, actually* и др.) (§ 98).

Образец:

The method does give us the possibility...

Этот метод действительно дает нам возможность...

1. The nuclei **do contain** most of the mass of the atom.
2. Turboprop (turbine-propeller) engines **do use** the gas turbine to operate the propeller.
3. The simple voltaic cell **certainly does act** as a generator of electric current, but as this current rapidly falls in value the cell is of no use for practical purpose.
4. In recent years it has been shown that chemical combination as well as external pressure **does influence** although slightly the activity of radioactive nuclei and, moreover, that radioactivity has important effects on chemical structure.
5. When in the 90s scientists studied some of the events that take place when an electric current passes through a vacuum, they came to the conclusion that particles smaller than an atom **do indeed exist**.

11. Переведите предложения, содержащие конструкцию “*It was not until...* that (when)”, которая служит для выделения слов, заключенных между компонентами конструкции.

Заметьте, что из всех компонентов конструкции переводятся лишь слова *not until*, причем возможны следующие варианты перевода этих слов: «только», «только в», «только после», «только тогда, когда» (§ 99, п. 2).

Образец:

It was not until the seventeenth century that man began to understand pressure.

Только в XVII веке человек начал осознавать, что такое давление.

1. **It was not until 1930 that the third type of particles that make up atoms was discovered.**
2. **It was not until around 1610 when Galileo first observed Saturn through his telescope.**
3. **It was not until 1600 that it was discovered that glass and certain other materials could be electrified.**
4. **It was not until the last quarter of the seventeenth century that some of the fundamental operating principles of the rocket were explained.**

5. It was not until 1936 that physicists felt that they had arrived at a satisfactory theory of what was contained within the nucleus.

6. It was not until about the end of the war that it was realized that turbine efficiencies were lower than had been expected, and were mainly responsible for the poor engine specific fuel consumption of that time.

7. It was not until the internal combustion engine had been fairly well developed that propulsion of lighter-than-air aircraft became feasible.

12. Повторение. Найдите в предложениях глаголы-сказуемые, выделительные конструкции и инверсию. Переведите эти предложения.

A. Глагол-сказуемое

1. The modern television cathode-ray tube uses either magnetic or electrostatic focusing.

2. This offers wide scope for astronomical observations, particularly of the planets, but also of infra-red emission from the stars.

3. These results led the German physicist, Hess, to propose that the source of this radiation was beyond our atmosphere, that the radiation was penetrating and that it fell upon the atmosphere uniformly from all directions.

4. This demonstrates that blue light has a shorter wavelength than red light.

5. The source of electrons in an electron microscope is a heated filament.

6. Liquid-crystal substances are currently being used to create a new family of devices for the display¹ of symbols such as numbers and letters.

7. The original thyratrons were filled with mercury vapour but other gases have since been used for particular applications.

8. The rainbow² is a complicated mixture of colors and its appearance depends on the size of the drops producing a rainbow.

9. The principal force between nucleons are of two types. One is the purely electrostatic repulsive Coulomb force between the protons.

10. The vacuum of space is nearly a perfect insulator against heat transfer by conduction or convection.

11. The size of the Sun is readily found from its measured angular diameter, when its distance has been determined.

¹ display — воспроизведение

² rainbow — радуга

12. The Sun is continually sending out energy in the form of radiation.

13. In 1897 J. J. Thomson proved that the cathode rays consisted of particles which carried negative charge and are an essential constituent of all atoms; these particles were called electrons.

Б. Выделительная конструкция (§ 89)

1. It was N. I. Kibalchich (1854—1881), the revolutionist and member of the Narodnaya Volya, who first developed a project for a manned rocket aircraft in Russia.

2. It was Faraday who first suggested that electrolytic action might be used for measuring currents.

3. Curiously¹, it was not an astronomer but the great German philosopher Immanuel Kant who first advanced the nebular hypothesis.

4. It is because of their inertia that balls of all kinds continue their motion when thrown or struck.

5. It was not until 1609 that the German astronomer Johannes Kepler described planetary paths correctly for the first time.

6. It is the electrons which are responsible for the radio appearance of the Sun, and it is the corona rather than the photosphere which can be explored by radio waves.

7. It was Newton who first showed that white light can be split into many colours, all of which are present in the white light.

В. Инверсия (§ 93—97)

1. Shown in Fig. 92 is a 500-line television picture of what may be expected to be seen on the surface of the moon with a 10 db. signal-to-noise ratio.

2. Built into the spacesuit of the astronaut were simple and convenient sensors² which converted the physiological parameters into electric signals.

3. Brought together in this work are the essential principles underlying configuration design of guided missiles.

4. Associated with the bombardment of atoms in the upper atmosphere by particles from the Sun is an aurora.

5. Incomplete though the information about the constitution of the atmosphere of the planets obtained by this method may be it is still of great value.

Лексические упражнения

13. Переведите предложения, обращая внимание на то, что подлежащее в этих предложениях значительно удалено от сказуемого, вследствие чего ускользает смысловая связь между этими членами предложения.

Сначала рекомендуется перевести часть предложения, расположенную до сказуемого, а затем вернуться к подлежащему.

¹ curiously — интересно, что ...

² sensor — датчик

1. The presence of free oxygen in the atmosphere of the earth, of particular importance for the existence of animal life, is attributed to the widespread vegetation over the surface of the earth.

2. The use of fusion, which is the third method of using nuclear energy for propulsion in the space vehicles of the future could become attractive.

3. Strong evidence that atoms did, in fact, possess an observable internal structure was provided from spectroscopic observations of the light.

4. The energy of a collection of protons and neutrons forming a stable nucleus is lower than the energy of the constituent protons and neutrons, when separated from each other.

14. Переведите предложения, обращая внимание на многозначность глагола to account for (1. объяснять; 2. учитывать; 3. компенсировать) (8,6).

1. Einstein's theory of light was put forward to account for the photoelectric effect.

2. There exists so far no mathematical theory that would account satisfactorily for the actually observed types of fluid motion.

3. The number of free electrons increases with increase in temperature, thus accounting for the high negative temperature coefficient of resistance in semiconductors.

4. In considering real fluids the force required to overcome viscosity must be accounted for.

5. Care must be taken to account for the possibility of airflow interference between the missile and airplane.

6. In this case fusion processes yield enough energy to account for the losses to the surroundings.

15. Переведите предложения, содержащие слова одного словообразовательного ряда.

pure *a*, purify *v*, purification *n*, purity *n*, impurity *n*

1. The surface tension¹ of all pure liquids and most mixtures decreases with temperature.

2. Special devices were used to purify metals.

3. After purification the water was fed through the pipe.

4. Deuterium, the heavy isotope of hydrogen is obtained in high purity by the electrolysis of water.

5. In quantitative analysis, radiation is used to detect very small amounts of impurities in various materials.

trace *n*, tracer *n*, trace *v*, traceable *a*

6. The removal of all traces of oil must be done before starting the magneto.

¹ surface tension — поверхностное натяжение

7. If we bring a trace of gas into a glass tube from which the air has been evacuated and let an electric discharge pass through, the gas will begin to glow.

8. Radioactive tracer techniques introduce a most powerful analytical tool.

9. The similarity and lack of similarity among solids, liquids and gases may be traced to the structure of their molecules.

10. Viscosity is traceable to the molecular structure of a fluid.

average a , on the average, average u

11. The positron appears to have an average life of only a few billionth of a second (10^{-9} sec).

12. The material of Jupiter is much lighter on the average than the Earth's material.

13. The temperature averages 60 or 65 below zero at that altitude.

16. Повторение. Переведите предложения, обращая внимание на перевод выделенных словосочетаний:

this is the case, this is not the case, so far as (smth.) is concerned, to be referred to as (smth.), no matter how, in terms of (smth)

1. The absence of an atmosphere causes the Moon's temperature to vary much more than is the case on the Earth.

2. If our Earth were exactly ellipsoidal, the orbit of an artificial satellite would be comparatively easy to calculate. We know, however, that this is not the case.

3. The fundamental difference between fusion and fission reactions, as far as practical attainment of power is concerned is that it is extremely difficult to make the light elements react.

4. Several experimentors began their aeronautical activities with helicopters, and some success was achieved, so far as obtaining lift was concerned.

5. To emphasize the fact that some stars do not change their relative positions with respect to one another, they are referred to as "fixed" stars.

6. A certain quantity of work is equivalent to a certain quantity of heat, no matter how that work is turned into heat.

7. One of the first failures of classical physics resulted from attempts to describe the thermal radiation of hot bodies in terms of classical statistical mechanics.

Словообразовательное упражнение

17. Переведите следующие слова, учитывая, что префикс semi- соответствует значению приставки «полу-», trans- — «транс-» и non- — «не»:

semiconductor, semicircle, semimonococque, semiautomatic, transatlantic, transoceanic, transcontinental, non-conductor, non-essential, non-standard, nondurable

Упражнение на перевод терминов

18. Переведите термины. Дайте сначала описательный перевод, а затем установите, какой термин в русском языке выражает это понятие в указанной области техники.

А. Термины, состоящие из трех компонентов: существительное + причастие (или герундий) + существительное

pulse-forming coil (связь)
 ↓
 какая? ← катушка
 ↓
 что? ← образующая
 ↓
 импульс
 импульсная катушка

Английский термин	Область применения
error indicating circuit	автоматика
direction-finding receiver	радио
data-translating system	вычислительная техника
error-measuring system	автоматика
plutonium-producing reactor	ядерная физика
beam-forming cathode	телевидение
isotope-handling equipment	ядерная физика
voltage-regulating system	электротехника
information-carrying capacity	телевидение
frequency-dividing circuit	радио
spectrum-measuring detector	ядерная физика
electron-emitting source	ядерная физика
receiver feeding battery	радио
information destroying process	автоматика

Б. Термины, состоящие из трех компонентов: существительное + причастие II + существительное

relay-operated device (автоматика)
 ↓
 какое? ← устройство
 ↓
 чем? ← приводимое в действие
 ↓
 реле
 прибор непрямого действия

Английский термин	Область применения
radio-controlled bomb	автоматика
surface-launched missile	ракетная техника
surface-cooled reactor	ядерная физика
neutron-produced fission	то же
liquid-cooled engine	двигатели
time-modulated beam	телевидение
ground-based computer	авиация
engine-driven pump	двигатели
fission-produced particle	ядерная физика
ramjet-propelled missile	ракетная техника
cathode-loaded amplifier	радио
pressure-operated switch	автоматика
battery-fed receiver	радио
rocket-powered booster	ракетная техника
meson-produced star	ядерная физика

Упражнения в чтении

19. Прочтите следующие слова, обращая внимание на чтение буквы і перед окончанием -es:

Глаголы в 3-м лице единственного числа настоящего времени Существительные во множественном числе

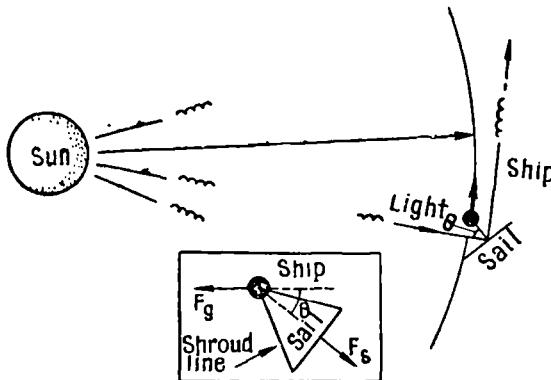
[ai]	[i]
modifies	cities
simplifies	velocities
identifies	properties
rectifies	impurities
amplifies	capabilities
specifies	capacities

20. Прочтите следующие слова с префиксами semi-, trans-, по-., соблюдая правильное ударение:

'semicon'ductor, 'semi'circle, 'semi-'monocoque, 'semi-auto'matic, 'transat'lantic, 'trans,oce'anic, 'trans,cont'i'national, 'non-con'ductor, 'non-es'sential, 'non-'linear, 'non-'standard, 'non'durable

21. Прочтите следующие слова из основного текста:

comparable ['kɒmpərəbl]
non-linear ['nɒn'li:nɪə]
crystalline ['krɪstəlɪnɪ]
eme'ge [ɪ'me:dʒ]
electrolyte ['lektro'laut]
insulator ['ɪnʒuleɪtə]
within [wɪ'ðin]


interfere [ɪn'terfɪə]
loose [lu:s]
transfer *n* ['træns fə:]
transfer *v* [træns'fə:]
silicon ['sɪlikən]
germanium [dʒə:'merniəm]
microphonics [,maɪkro'fənɪks]

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. INTERPLANETARY TRAVEL BY SOLAR SAIL¹

(Для перевода без словаря)

Although the existence of radiation pressure has been known for many years, its application to spaceship propulsion has been mentioned only infrequently. A solar sail derives its propulsive force from the pressure due to the Sun's light falling on a sail, which may be a thin sheet² of aluminium foil³ or a thin plastic sheet silvered or aluminized on the sunny side to reflect the light. Some obvious advantages of the solar sail are as follows: mass ratio of unity (mass of ship remaining constant), availability of

Forces acting on spaceship.

sail force throughout ship's entire journey, no need of fuel or propellant, no propulsive power plant aboard ship and its associated waste-heat disposal problem. Although the available force is small as compared to that of chemical rockets, it can be applied for as long as it is needed. A trip to Mars and Venus can perhaps be made in less time by solar sail than by chemical rocket. A solar sail is equivalent to a rocket of mass ratio unity with an infinite propellant reserve. As far as propulsion is concerned, the ship can always return to Earth or make in-flight navigational corrections. In addition to this, since the ship moves at a nonuniform speed under a noncentral force system, the ship's contents are not absolutely weightless, although the weight of any object would be much less than that at Earth's surface. The solar sail is of negligible⁴ cost, and is perhaps more powerful and less difficult than many often-cited⁵ competing schemes. We might add that a sailing project can be realized fairly soon without extensive research and development.

¹ sail — парус

² sheet — лист

- 3 foil — фольга
- 4 negligible — чрезвычайно малый
- 5 cite — цитировать

2. ELECTRON MICROSCOPE IN METALLURGY

(Для перевода со словарем)

Examination of an object with a microscope may reveal information about its composition or the manner in which it was made. However, for greater certainty confirming evidence from other types of investigation usually is desirable.

For practical purposes optical microscope is limited to magnifications of perhaps 2,000 or 3,000 diameters. So, a microscope of a different type was developed. It became known as an "electron microscope", because its operation depends on streams of electrons instead of light rays. As distinct from ordinary optical microscope, it provides magnifications many times higher than can be obtained with the best optical instruments but it has disadvantages too. It is expensive and usually requires considerable skill and patience on the part of the operator.

The electron microscope is essentially a transmission instrument but pictures can be obtained by reflection if the electrons strike the specimen at an angle instead of from a perpendicular direction. However, because of this angle, the image is distorted considerably except for a narrow central strip. Use of the microscope in this way is likely to be limited to special problems.

Because the beam of electrons cannot pass through a piece of metal thicker than 1/100,000 centimeter, nearly all early work with the electron microscope in this field was done by a "replica" method. Some materials, such as the plastic, can be used to obtain a thin layer of substance — a replica — that produces faithfully the irregularities in the surface of a specimen and is relatively transparent to electrons. The replica can be used instead of the original specimen in the electron microscope.

3. BASIC DESIGN CONSIDERATION OF A NUCLEAR ROCKET

(Для перевода со словарем)

The production of thrust in chemical rockets consists of raising the propellant to a high temperature and pressure in the combustion chamber, and then expanding it through a nozzle to obtain the maximum obtainable velocity. The same expansion process is used in nuclear rockets, but the method of heating the propellant gases is different. The high gas temperature obtained in chemical rockets results from the combustion of a fuel and oxidizer. These propellants are chosen with the objective of creating as high a

temperature as possible while maintaining a low molecular weight in order to maximize the exhaust velocity. In the nuclear rocket as distinct from chemical rocket, combustion of the propellant gases is not required to produce the high temperatures and pressures. Heat is generated by nuclear fission in a reactor and transferred to the propellant, thus eliminating the need to have both oxidizer and fuel.

To attain the objective of maximum specific impulses, it is desirable to select nuclear-rocket propellants with a small molecular weight. Hydrogen, the element with the smallest molecular weight, is theoretically the ideal propellant, from the standpoint of obtaining large exhaust velocities and therefore high specific impulses. While hydrogen does react with many materials at elevated temperatures, other low-molecular-weight elements present storage or use problems that exceed those associated with hydrogen.

The heat required to raise the propellant temperature is produced by fission. Fissionable elements such as uranium, thorium or plutonium are used as fuel. An atomic nucleus of a fissionable element is split when struck by a neutron. However, fission can be avoided by reflecting the neutron or allowing the nucleus to capture the neutron. The probability of both these actions occurring depends on the velocity of the neutron in relation to the type of nucleus and its velocity.

The velocity of the neutron is important to the process because it is a form of energy and fission is more apt to occur at certain energies than others. In general, the higher velocity a neutron possesses, the less likely fission will take place. Whenever fission does occur, neutrons are not the only particles which create heat. When a nucleus is split, it is split into fragments that possess large quantities of energy in varying velocities. Neutrons are also emitted with high velocities (50,000,000 feet per second), along with other nuclear particles (alpha and beta particles, gamma-rays and neutrinos). Energies of all these fission products are reduced by interaction with other nuclei. This interaction in turn generates heat.

Elements having the properties of being good reflectors and poor absorbers of neutrons are used to reflect and thus reduce the energy of neutrons. Materials (such as carbon) used for this purpose are called moderators. Although their main objective is to slow neutrons to the point where they are likely to cause fission, the heat generated by moderators is only a small part of the total heat generated.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В какой функции выступают и как переводятся на русский язык следующие несвободные словосочетания (§ 62):

at the expense of (smth.), because of (smth.), apart from (smth.), on account of (smth.), with respect to (smth.), irrespective of (smth.), aside from (smth.), in (by) virtue of (smth.), previous to (smth.), with reference to (smth.), along with (smth.), in view of (smth.), in contrast to (smth.), as distinct from (smth.), prior to (smth.), combined with (smth.), owing to (smth.), with (in) regard to (smth.), contrary to (smth.), in spite of (smth.), except for (smth.), in conjunction with (smth.), according to (smth.), together with (smth.), thanks to (smth.), in accordance with (smth.).

2. Как переводятся следующие несвободные словосочетания, группирующиеся вокруг слов *so* и *as* (§ 60, 61):

so as, so that, so far, or so, and so on, and so forth, as to (smth.), as for (smth.), as follows, as yet, as soon as, as well as, as well, as if, as though, as (so) far as, as (so) long as.

3. Как переводятся следующие несвободные словосочетания, группирующиеся вокруг слов *date*, *time*, *part* (§ 57—59):

up to date, out of date, at times, for the time being, in time, for the most part, in part, on the part of (smb.).

4. Как переводятся следующие несвободные словосочетания (§ 65):

in common, at length, by now, by then, on the whole, on the average, no longer, a great (good) deal, in turn, once more, at once, one another, each other.

5. Какую роль выполняет вспомогательный глагол *to do* в утвердительном предложении при наличии смыслового глагола (The atmosphere does offer protection...) (§ 98)?

6. Укажите способ перевода конструкций типа "it was not until 1958 that..." (упр. 11).

7. Какое значение имеют префиксы *semi-*, *trans-*, *non-* (упр. 17)?

УРОК ДЕВЯТЫЙ

Текст: Nuclear Power for Aircraft.

Грамматические основы перевода

Слова и словосочетания, служащие для связи частей высказывания
(§ 68—74).

Лексические основы перевода

Перевод слов: *sure, assembly, former, latter.*

Перевод союза *while*.

Перевод предлога *with*.

Перевод многозначных служебных слов: *also, again, otherwise, rather, yet, still, then* (упр. 5—8).

Перевод слов с различными суффиксами и префиксами (упр. 17).

Перевод наречий с суффиксом *wise* (упр. 18).

Перевод терминов типа «существительное + причастие II», соединенных дефисом (упр. 19).

ТЕКСТ

NUCLEAR POWER FOR AIRCRAFT

The chief attraction of the nuclear-powered aircraft appears to be the prospect¹ of virtually unlimited range.

To begin with², the extremely high heat values of nuclear fuel are tens of thousands of times greater than chemical fuel, and the consumption is very small which would ensure³ long range; and flight round the 25,000-mile circumference* of the earth without refuelling would be an easy task.

Again⁴, the advantage offered by nuclear power of long endurance⁵ would enable an aircraft to be kept flying for very long periods. In consequence⁶, such an aircraft carrying early warning⁷ radar^{**} would be invaluable in an air defence system.

* circumference — окружность

** early warning radar — радиолокационная станция дальнего обнаружения

It seems likely, however, that the weight of shielding⁸ required would result in a very large aircraft in which high percentage⁹ power plant would pose difficult design problems, published¹⁰ estimates for all-up¹¹ weight varying from 250,000 to 500,000 lb. There will be concentration of weight in the fuselage unless it is found possible to locate the payload¹² in the wings, which will not be otherwise¹³ required (for large volumes¹⁴ of chemical fuel). Then¹⁵, for shielding purposes the tendency will be to place the aircrew as far forward as possible, with the payload and undercarriage, etc. between them and the power plant. The reactor shield assembly¹⁶ of the power plant will weigh up to 100,000 lb. with a density of about 150 lb./cu. ft., or some six times that of a turbojet engine. This will give rise to special structural problems.

It seems likely that the first nuclear power plants would be based largely on existing gas turbine practice, replacing¹⁷ the combustion chamber by a heat exchanger designed to transfer heat to the engine air from a secondary fluid which would draw its heat from the atomic pile¹⁸.

Furthermore, the nuclear power plant problem is not only one of flight. It is known that when a reactor is shut down¹⁹ and the fission process stops, considerable heat continues to be generated by the decay²⁰ of fission products. This phenomenon is called "afterheat,"* and although it steadily decreases, the amount of heat during the first week is great enough to require forced cooling for the core²¹ not to melt and destroy the reactor. The difficulty can doubtless be overcome, yet an accident²² involving the stopping of the engine will present a situation where the afterheat will undoubtedly damage the core, with the consequent generation of harmful²³ by-products**.

Still, some advantages in aircraft design accompany²⁴ the use of atomic fuel. First of all, the concentration of loads eases²⁵ the problem of structural design. Then, greatly reduced is the fire risk, since the amount of chemical fuel carried, when nuclear power is used, is only adequate to give satisfactory conditions for take-off and landing. On the other hand, a nuclear-powered aircraft has to land with the same weight as it takes off, and there are many unknown factors, such as the effect of radiation on the materials used in its construction. As regards the former, suggestions have been made to use jet-lift engines (oil-fuelled) to provide vertical take-off and landing; concerning the latter little is yet known about changes in aircraft materials in such circumstances²⁶.

In short²⁷, while²⁸ nuclear reactors offer the possibility of specific impulses approximately twice as great as those of the heat chemical systems, they have several potential disadvantages that

* afterheat — радиоактивный распад
** by-products — продукты распада

must be considered and minimized where possible. These are reactor weight, problems involved in neutronic start-up and control and the intense radiation field during power operation. Further, the inherent reliability of such systems is an unknown quality, although assumptions regarding reliability must be made in choosing²⁹ one reactor design over another.

To sum up³⁰, it seems certain that a nuclear-powered aircraft can be constructed and flown, but whether it will prove too cumbersome*, too dangerous, and too expensive³¹ to operate are questions which have yet to be answered.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, обращая внимание на перевод выделенных средств связи типа *in* (*by*) *contrast* («и наоборот», «напротив», § 71).

in (*by*) *contrast*

1. Pluto is so far away from the Sun that the Sun looks no larger in its sky than a star does to us. On Mercury, by contrast, the Sun would nearly fill the sky.

2. The principles of dynamics had been summed up by Newton as early as 1687. In contrast, the other primary branches of physics — heat, light, electricity, etc. — did not begin to assume their modern forms until the nineteenth century.

on the contrary

3. The natural tendency of heat to flow from a higher to a lower temperature makes it possible for a heat engine to transform heat into work. On the contrary, a mechanical refrigerating machine must transfer heat from a colder to a hotter body.

conversely

4. Steady flow exists if the velocity at a point remains constant with respect to time. Conversely, unsteady flow exists if the velocity changes either in magnitude or in direction with respect to time.

5. If an air mass is moved from a position near the ground to a higher position, the reduced surrounding pressure results in an expansion, which in turn causes a cooling of the air. Conversely, if an air mass is brought to a lower elevation of greater pressure, it is compressed and the temperature increases.

alternatively

6. The cathode of a two-electrode valve¹ sometimes consists of a filament² which is directly heated by an electric current. Alternatively, it may be a metal cylinder which is indirectly heated by radiation or conduction.

* cumbersome — громоздкий

¹ valve — радиолампа

² filament — нить накала

7. The absorption of a neutron by a nucleus may be followed by the emission of a neutron in which case the nucleus makes an overall gain of an additional proton. Alternatively, a proton may be emitted, in which case the nucleus gains one neutron.

2. Переведите предложения, обращая внимание на перевод выделенных средств связи типа *hence* («следовательно», «поэтому», § 72).

hence

1. Physics deals primarily with phenomena that can be accurately described in terms of matter and energy. **Hence**, the basic concepts in all physical phenomena are concepts of matter and energy.

2. The boiling point on the Centigrade scale is 100° and on the Fahrenheit is 212°. **Hence**, 1° on the Fahrenheit scale equals five ninths of 1° on the Centigrade.

accordingly

3. Gases like oxygen and hydrogen will remain liquid only at very low temperatures (−150° to −250° C). **Accordingly**, we transport oxygen and hydrogen compressed in cylinders to 120 times the pressure of the air.

4. Although the technical development of computing machines is going on at a rapid rate, the general principles underlying their operation will probably remain unchanged for a long time. **Accordingly**, this book puts main emphasis on principles and methods rather than on engineering details.

3. Переведите предложения, обращая внимание на перевод выделенных средств связи типа *likewise* («точно так же», «аналогичным образом», § 70).

likewise

1. A semiconductor in which n-type impurities predominate is also called n-type. **Likewise**, one in which p-type impurities are in the majority is referred to as p-type.

2. The total drag determines the top speed. Adding weight will decrease the climb and increase the landing speed; it will also decrease the maximum speed. **Likewise**, increase in the drag will reduce the top speed.

similarly

3. In order to get a large thrust, a large burning surface must be used to obtain a large mass flow. **Similarly**, to obtain a long duration of thrust only a small portion of the propellant charge must burn at a time.

4. When glass and silk are rubbed¹ together, some negative electricity is transferred from the glass to the silk, leaving the glass with a net positive charge and the silk with an equal negative charge. **Similarly**, hard rubber receives negative electricity from the wool with which it is in contact, leaving the wool positive.

¹ rub — тереть

4. Переведите предложения, обращая внимание на перевод выделенных средств связи типа *to sum up* («итак», «суммируя, можно сказать, что», § 72).

1. *To sum up*, the present chapter places emphasis on those properties of crystalline solids which can be understood on the basis of present atomic theory.

2. To achieve a high jet velocity it is necessary to generate as much heat as possible for conversion into kinetic energy. As the gas is accelerated it loses most of its heat and exhausts at a lower temperature. To accelerate the gas, a high pressure is needed in the rocket chamber. **In summary**, then, to produce a large thrust, we need high mass flow, high energy and high pressure.

3. Electromotive force is present in the battery whether it is in circuit or disconnected. When the voltage of a battery in an open circuit is measured the figure obtained is e.m.f. If, however, it is measured when connected in circuit the figure obtained may be regarded as potential difference. **To summarize**, electromotive force is the total available voltage of a battery, whereas¹ potential difference is the active difference of voltage in an electrical circuit.

5. Переведите предложения, содержащие слова *also* и *again*, имеющие несколько значений. Обратите особое внимание на перевод этих слов в функции средств связи (§ 74).

also: 1. *также*

2. *кроме того; более того*

again: 1. *снова*

2. *кроме того; более того; с другой стороны*

also

1. So far, electrons have been treated as particles, but it can be shown that electrons have a wave nature *also*.

2. The warm air heats air above it. *Also*, the warm air will rise, and in going to a region where the pressure is less it will expand.

3. *In* this chapter we have created symbols that are associated with vectors. *Also*, various vector operations have been given that enable us to represent certain actions in nature mathematically.

4. While strontium batteries have a very long lifetime, they yield a rather low number of watt-hours per pound. *Also*, nothing can be done to alter the rate at which the isotope releases energy.

5. The curved shadow of the Earth on the Moon even thousands of years ago was regarded as proof that the Earth was a sphere. *Also*, the fact that different constellations² were seen in northern and southern parts of the world was taken to indicate that the Earth was curved.

¹ whereas — тогда как

² constellation — созвездие

again

6. If at a given instant the velocity remains constant with respect to distance along a streamline, the flow is said to be uniform. Again, it must be remembered that, if there is a change either in magnitude or direction along the streamline, then the flow is non-uniform.

7. Solid sugar, when added to water, dissolves and forms a homogeneous¹ solution. Liquid alcohol and water also mix in all proportions to form solutions. It is generally possible, by suitable means, to separate again the constituents of solutions, one method being by distillation.

8. The fact that electrical energy can be converted into mechanical energy can be readily observed in the electric motor. Again, electrical energy can be converted into heat energy by means of the commonly used electric heaters, for example.

8. Переведите предложения, содержащие слова *otherwise* и *rather*, имеющие несколько значений. Объясните, от чего зависит правильный перевод этих слов в каждом случае (§ 74).

otherwise: 1. иначе, в противном случае; 2. в другом отношении, другим образом; 3. (имеет значение, противоположное значению стоящего перед ним слова)

rather: 1. скорее; 2. довольно, весьма

rather than: а не; вместо того, чтобы

otherwise

1. From early times man has been continually creating and improving devices to assist him in completing tasks that would otherwise be difficult or impossible.

2. Space vehicles can carry the scientist's instruments as well as the scientist himself to regions otherwise not accessible² to collect information otherwise unattainable.

3. A force is a push or pull which tends to start, stop or otherwise change the motion of a body on which it acts.

4. External forces, whether lifting or otherwise, that act upon a body are termed "loads".

5. Unless otherwise stated, all vectors in this chapter are assumed to be three-dimensional.

6. For this to happen, the neutron itself must have a magnetic field surrounding it, hence be a magnet itself. Otherwise no interaction would have been observed.

rather

7. A rocket starts its trip rather slowly, but after its propellant supply is consumed its acceleration increases.

¹ homogeneous — однородный

² accessible — доступный

8. In mechanical systems energy will be stated in joules rather than in ergs.

9. The nuclear rocket does not use any combustion process. Rather, the hot exhaust gas is developed by passing a working fluid through a fission reactor.

10. The material in the airframe of a vehicle is considered "dead weight," since it does not contribute directly to the production of thrust. Rather, the dead weight imposes¹ a limitation on the maximum velocity.

11. It is not likely that the energy of fission will be used instead of the existing energy sources, but rather to supplement² them.

7. Переведите предложения, содержащие слова *yet* и *still*, имеющие несколько значений. Обратите внимание на близкие значения этих слов (§ 74).

yet, still: 1. *однако; тем не менее*

2. *(все) еще; до сих пор*

as yet: *все еще; до сих пор; пока*

yet

1. The nucleus of an atom contains most of the atom's mass. *Yet*, it occupies little of the atomic volume.

2. Mendeleev was able to leave gaps in his table for elements *yet* to be discovered.

3. Becquerel found that *yet* another type of penetrating ray was produced in a naturally occurring substance — uranium, as well as the X-rays from the cathode-ray tube.

4. *As yet* we have not considered the speeds of spaceships.

still

5. Rockets may differ from each other. *Still*, the principles of rocketry are the same.

6. Everyone is familiar with general appearance of the Moon and its "phases." Not everyone realizes, however, that the Moon *still* presents the same face towards the Earth throughout all these phases.

7. The simpler phenomena of magnetism are known to every scientific student, but a complete understanding of the mechanism of magnetic action is *still* the subject of advanced research.

8. The planets vary in size, Pluto and the four nearest to the Sun being small compared with Jupiter, Saturn, Uranus and Neptune, although *still* much bigger than the asteroids.

9. Solenoids produce stronger magnetic fields than straight wires. When a magnetic substance is placed within a solenoid, *still* stronger fields are created.

8. Переведите предложения, содержащие слово *then*, имеющее значения «затем», «следовательно», «тогда», «в этом случае» (§ 74).

¹ impose — налагать

² supplement — дополнять

1. The planets are divided into two main groups. The inner group is made up of four comparatively small bodies, Mercury, Venus, the Earth and Mars; then comes a wide gap, containing the minor planet zone, after which we reach the four giants, Jupiter, Saturn, Uranus and Neptune.

2. The chemical properties of isotopes are practically identical since these depend on the number of electrons surrounding each nucleus. Isotopes of an element then are atoms whose nucleus has the same net charge, but contains different numbers of neutrons.

3. If the air in a discharge tube is gradually pumped out and a high voltage applied to the tube, then, as the pressure reaches a few centimeters of Mercury, long reddish streamers¹ pass down the tube.

4. It is not enough to say that the length of a thing is 8 or 96; we must give the units — feet, or inches, or centimeters. In short, then, to measure a quantity² is to compare it with some other quantity of the same kind.

9. Переведите следующие слова и словосочетания, служащие для связи отдельных частей высказывания (§ 68—74):

to begin with, in addition, otherwise, hence, in short, alternatively, yet, first, so, as a result, to sum up, rather, again, nevertheless, conversely, likewise, also, then, in contrast, accordingly, in summary, briefly, still, moreover, second, further, similarly, however, besides, now, therefore, thus, first of all, finally, next, in consequence, lastly, furthermore, to summarize.

10. Повторение. Переведите предложения, обращая внимание на различные значения глагола to be + инфинитив и на инверсию.

A. Различные значения глагола to be.

1. The purpose of this experiment is to determine the flow and density of solar plasma and the energy of its particles.

2. At the transmitting end of the television system the scene which is to be reproduced can be focused by means of lens system onto a plate in the television camera.

3. If a plasma is to be heated by magnetic compression, the compression rate must be high enough so that few particles are lost during the process.

4. The role of theoretical science is to find the hidden interrelations between the empirical laws and interpret³ them in the light of certain hypothetical assumption concerning the internal structure of matter not subject to direct observations.

5. Emission in the short X-ray region is to be expected from stars which exhibit activity like that of the sun.

¹ streamer — язычок (пламени)

² quantity — эд. величина

³ interpret — объяснять

6. The radiometers were to obtain information about the planet's temperature and atmosphere.

7. The function of the modulator in a radar transmitter is to switch on the Rf¹ generator at the correct moment.

Б. Инверсия (§ 93—97)

The light from the Sun passes through the atmosphere before it reaches us and some of the light is absorbed in the atmosphere. The consequence is that some of the absorption lines that are present in the observed spectrum of the Sun do not originate in the Sun but in the atmosphere of our Earth. Of particular importance to us is the absorption produced by the ozone in the atmosphere. The amount of ozone in the atmosphere is extremely small; it is estimated to be equivalent to a layer about one-tenth of an inch thick at atmospheric pressure and room temperature. It occurs almost exclusively above the highest clouds, the greatest density being at a height of between twenty and thirty miles. Small though the amount of ozone is, the absorption produced by it in the ultra-violet region of the spectrum is so strong that all of the light of wavelength shorter than 0,000012 inch is completely absorbed; none of the light in this region of the spectrum is consequently accessible to observation. Unfortunate though this is for the investigations of the astronomer, it is a fortunate circumstance for life, for human being could not exist if there were not a small amount of ozone in the atmosphere. ~

Лексические упражнения

11. Переведите предложения, содержащие прилагательное **sure** (9,3) и сочетания с ним:

sure «достоверный»; **surely** «обязательно»; **to be sure** «быть уверенным» (в качестве сказуемого), «несомненно» (в качестве модального слова); **to be sure** (to do smth.) «обязательно» (сделать что-л.); **to make sure** «удостовериться»; **to ensure** «обеспечить»

1. That no atoms were smashed by man before 1939 is a **sure** fact.

2. The spaceship *Vostok* was fitted with everything necessary to **ensure** the spaceman's safety during the flight and his safe landing.

3. Scientists are **not** yet quite **sure** as to why some isotopes give off alpha particles, while others give off beta particles.

4. Space rockets are **sure to** assist in advancing our knowledge of high-energy radiations from outer space.

5. Out of the vast number of stars in our Universe there **surely** must be some systems with earthlike planets.

6. **Make sure** that all traces of oil are removed from the magneto.

¹ Rf (radio frequency) — высокая частота

7. To be sure, a number of techniques are available to protect the payload of a ballistic missile from the extreme heating produced during re-entry.

12. Переведите предложения, содержащие слово **assembly** (9,16), имеющее несколько значений. Объясните, от чего зависит выбор перевода в каждом случае.

1. The task of the plant was to make an **assembly** of all the component parts of the device.

2. All electronic **assemblies** and sub-assemblies of radar installed on the aircraft are cooled during the flight.

3. The solar system is a remarkable **assembly** of bodies revolving about the sun.

4. The liquid propellants are injected into the chamber by injector **assemblies**.

13. Переведите предложения, содержащие слова-заменители **the former** и **the latter**. Укажите, какие существительные заменяются ими.

1. Although liquids and gases are both fluids, the density of the **former** is only slightly influenced by changes in pressure and temperature.

2. All experiments show that for heavy nuclei the nuclei density is constant up to a certain distance from the centre and that it decreases to zero in a further distance which is small compared with **the former**.

3. When an electron current flows along a conductor **the latter** becomes heated.

4. Of the preceding two sections **the latter** will not be required for those familiar with the applications of radar in aviation.

14. Переведите предложения, обращая внимание на то, что союз **while** имеет два значения: «в то время, как» и «хотя» (9,28).

1. Scientists discovered the existence of the binding force **while** they were investigating the phenomenon of radioactivity.

2. The transistor is a current-controlled unit, **while** the vacuum tube is voltage-controlled.

3. **While** isotope power sources are more efficient than the electrochemical systems, they still have some limitations.

4. **While** the rocket is a very simple device in theory, it can become exceedingly complex in practice.

15. Переведите предложения, обращая внимание на многозначность предлога **with**:

1. «с» (вместе с кем-л., с чем-л.); 2. «в зависимости от (чего-л.); 3. «в случае (применения чего-л.)», «при (применении чего-л.)»; 4. выражает отношения, передаваемые творительным падежом, отвечающим на вопрос «чем?». Помните, что предлог **with** может также входить в состав обособленного причастного оборота (§ 23, п. 3).

1. The non-metallic elements can combine together, and **with** the metals, **with** greater freedom.

2. Metals usually have a small positive coefficient; this is because the density of electrons does not change with temperature.
3. Multirange ammeters and voltmeters are provided with several shunts and multipliers.
4. With the metric system everything is measured in terms of three standard units: the meter, the kilogram and the second.
5. According to Kepler, for any two planets, with the periods of revolution being known with accuracy, the ratio of their mean distances may be obtained.
6. With the tremendous neutron intensities resulting from the chain reactions, isotopes in quantities unknown in the early days of neutron research now can be produced.

16. Повторение. Переведите предложения, обращая внимание на перевод многозначных существительных **impact, background, Item.**

1. Only microscopic particles exhibit the Brownian movement, because larger particles are subject to so many molecular collisions from all sides that the **impact** from one side neutralizes those from the other and no motion of particle results.
2. The full **Impact** of the work of the past decade on miniaturization is just beginning to be felt in industry.
3. The upper atmosphere emits light of two kinds, but neither is visible by day against the **background** of the bright sky.
4. The difference in viewpoint between physics and chemistry can hardly be appreciated without a **background** in both sciences.
5. The lift of an airplane is dependent upon two main **items**: the angle of attack and the mass of the air passing over the wing.
6. The several main **items** which are used to make up a complete armature¹ assembly are illustrated in Fig. 61.

Словообразовательные упражнения

17. Переведите следующие слова, исходя из значения основы и учитывая значения префиксов и суффиксов:

refuelling, rearmament, unavoidable, irremovable, inadequate, counter-clockwise, overestimate, undervalue, transoceanic, semi-fluid, subdivisible, ultra-short, non-fissionable

18. Переведите наречия с суффиксом **-wise**, пользуясь следующей моделью:

chordwise

(как)

(чего?) ← в направлении

хорды

по хорде

lengthwise, spanwise, clockwise, sidewise

¹ armature — якорь

Упражнение на перевод терминов

19. Переведите сложные термины, в состав которых входит существительное и причастие II, соединенные дефисом (radio-controlled).

Английский термин	Область применения
pressure-fed liquid propellant rocket engine	ракетная техника
cathode-coupled multi-vibrator circuit	радио
field-controlled transistor unit	радиоэлектроника
frequency-modulated transmitter set	»
pulsed amplitude-modulated carrier	радио

Упражнения в чтении

20. Прочтайте следующие слова, соблюдая правильное ударение:

un'limited, re'fuelling, in'valuable, ,concent'ration, re'lla'bility, ex'pensive, 'over'estimate, 'under'value, 'non-'fissionable, 'super-'natural

21. Прочтайте слова с суффиксом -wise, соблюдая правильное ударение:

'otherwise, 'clockwise, 'spanwise, 'sidewise, 'likewise

22. Прочтайте следующие слова из основного текста:

circumference [sə'kʌmfərəns]

damage ['dæmɪdʒ]

consequence ['kənsɪkwəns]

circumstance ['sə:kʌmstəns]

percentage [pə'sentɪdʒ]

cumbersome [kʌm'bəsəm]

assembly [ə'sembli]

dangerous ['deɪndʒərəs]

23. Прочтайте предложения, соблюдая указанные паузы:

1. To begin with, | the extremely high heat values...

2. To sum up, | it seems certain that...

3. Again, | the advantage offered by nuclear power...

4. Then, | for shielding purposes...

5. In consequence, | such an aircraft...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. SUBJECT MATTER OF FLUID MECHANICS

(Для перевода без словаря)

Fluid mechanics is a combination of an analytical and empirical science. On the one hand, there are certain problems such as aspects of laminar flow¹ and irrotational flow² which can be analysed and expressed very accurately, simply from a mathematical approach. On the other hand, most engineering

problems involve so many variables that it is possible only to approximate a solution by mathematical analysis alone.

Consequently, adjustments to mathematical developments must be made on an empirical basis — which results in the often-made accusation³ that fluid mechanics is a science of coefficients.

In order to overcome this criticism as much as possible, we have attempted to explain first the characteristics of fluid properties, based upon the fundamentals of molecular structure, and then to develop the basic theory involved in a particular concept of fluid mechanics.

Furthermore, we have attempted to explain and illustrate, on the one hand, the conditions under which the basic theory is directly applicable to an engineering problem and, on the other hand, the conditions under which the mathematical theory must be modified empirically (on the basis of experimental data) in order for it to be applicable to an engineering problem.

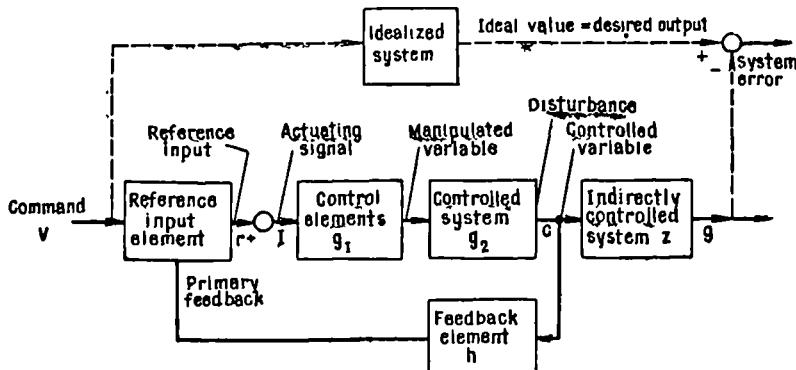
In short, ideal theory is indispensable⁴ for basic understanding, and for practical use of such understanding; the large number of variables involved frequently requires experimental data to establish a complete relationship — which includes certain coefficients and the range of application of both the theoretical and empirical aspects.

¹ laminar flow — ламинарный поток

² irrotational flow — безвихревой поток

³ accusation — обвинение

⁴ indispensable — необходимый


2. FEEDBACK CONTROL SYSTEMS

(Для перевода со словарем)

The essential feature of many automatic control systems is feedback. Feedback is that property of the system which permits the output quantity to be compared with the input command so that upon the existence of a difference an actuating signal arises which acts to bring the two into correspondence. This principle of feedback is really not new to us; it surrounds every phase of everyday living. It underlies the coordinated motions made by human body in walking and driving an automobile. It plays an equally important role in the countless applications of control system engineering in the fields of control of aircraft, special-purpose computers for many types of military equipment and in many other fields.

The distinction between an elementary system and one which is complex lies primarily in the difficulty of the task to be performed. The more difficult the task, the more complex the system. In fact with many present day systems this complexity has reached such proportions that system design has virtually become a

science. The functional behaviour of each system is treated here in terms of a block diagram and its associated terminology. Following this, attention is focused on the steady-state analysis of the performance of a voltage and a speed control system. Such a study accomplishes two objectives. First, it gives substance to some of the general ideas discussed up to this point, thereby making the operation of the system more vivid. Then, useful results applicable to any feedback control system are developed.

Block diagram of a feedback control system.

Every feedback control system consists of components which perform specific functions. As has been mentioned above, a convenient method of representing this functional characteristic of the system is the block diagram. Basically that is a means of representing the operations performed in the system and the manner in which signal information flows throughout the system.

The block diagram is concerned not with the physical characteristics of any specific system but only with the functional relationship among various parts in the system. In general, the output quantity of any linear component of the system is related to the input by a gain factor and combinations of derivatives or integrals with respect to time. Accordingly, it is possible for two entirely different and unrelated physical systems to be represented by the same block diagram, provided that the respective components are described by the same differential equations.

3. REACTORS FOR NUCLEAR-POWERED GAS TURBINES

(Для перевода со словарем)

High-temperature gas-cooled reactors would appear to be particularly well suited to nuclear-powered closed-cycle gas turbines, particularly if the working gas in the turbine circuit may be passed

through and heated directly in the reactor core. This gives the most compact system possible. A possible disadvantage to such an arrangement is that accidental escape of fission products from the reactor core into the gas stream may contaminate the machinery, and further problems are introduced if the gas used is of a type which can acquire induced radioactivity in passing through the reactor. This may demand light shielding around the turbo-machinery, a safety containment vessel enclosing the entire reactor and turbo-machinery, and will introduce some problems in machinery maintenance if the machinery becomes mildly radioactive. Such problems may not be particularly troublesome, however, except in the event of a major mishap in the reactor core.

These latter problems might be minimized if the reactor gas coolant circuit and the gas turbine circuit are separated from each other, the heat in the hot reactor coolant gas being transferred to the working gas in the turbine by means of an intermediate gas heat exchanger. However, with such an arrangement the intermediary high-temperature heat exchanger would be bulky, heavy and expensive and the potential advantage of compactness might be lost. Moreover, the insertion of a heat exchanger between the reactor gas coolant and the turbine gas inevitably necessitates that the maximum turbine gas temperature is depressed to a value 50—100° C lower than the maximum gas coolant temperature at outlet from the reactor, possibly leading to some sacrifice in the gas turbine thermal efficiency. Furthermore, a separate and independently driven compressor must be inserted in the reactor gas coolant circuit in order to circulate the coolant gas, resulting in additional overall mechanical complexity and further loss of net overall thermal efficiency.

It would seem probable, therefore, that a dual circuit arrangement of reactor and gas turbine of the above form might show little or no advantage over the more conventional reactor-steam turbine systems. Alternatively, such dual circuit arrangements might only prove attractive if high-temperature liquid-cooled reactor systems should prove ultimately to be practicable.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. На каком месте в предложении стоят обычно слова и словосочетания, служащие для связи частей высказывания (§ 73)?
2. Как переводятся следующие слова и словосочетания, выполняющие функцию средств связи:
to begin with, likewise, on the contrary, similarly, hence, to sum up, conversely, accordingly, alternatively.
3. От чего зависит перевод слов *also* и *again*? Укажите возможные варианты перевода каждого из этих слов (§ 74).
4. Какие значения может иметь слово *then* (упр. 8)?

5. Как переводится слово **otherwise**, когда оно является
а) средством связи, б) наречием (§ 74)?
6. Какую роль в предложении могут играть слова **yet** и **still**
(§ 74)?
7. Какие значения может иметь слово **rather**? От чего зависит
перевод этого слова (упр. 6)?
8. Какие значения имеет союз **while** (упр. 14)?

УРОК ДЕСЯТЫЙ

Текст: Cosmic Rays.

Грамматические основы перевода

Перевод эллиптических конструкций (§ 100—104).

Перевод сочетаний слов, выполняющих функцию союза типа *in which year* (упр. 5).

Лексические основы перевода

Перевод слов: *encounter, impart, eliminate, finally, ultimately, eventually, recognize, arrive, effect, affect, somewhat, something, thereafter, therefrom, therein, thereby, apparent, occasion.*

Перевод предлога *by*.

Перевод слов с префиксами *de-* и *fore-* (упр. 17).

Перевод сложных терминов типа *combustion chamber surface area* (упр. 18).

ТЕКСТ

COSMIC RAYS

Primary cosmic rays are submicroscopic particles that travel in space *outside*¹ the earth's atmosphere at speeds nearly equal to that of light. Some of them happen to approach the earth and enter the atmosphere.

High in the atmosphere, most of the primary cosmic rays *collide*² *violently*³ with the atoms they *encounter*⁴ in the air, in which case they *impart*⁵ their energies to the *fragments*⁶ resulting from the collision. *In effect*⁷, these fragments or secondary rays are what we observe at lower levels. Like the primaries they too collide with atoms in the air, or *eventually*⁸ with atoms in the earth, until *ultimately*⁹ the energy is all transformed into heat. The term *cosmic rays* is used to refer both to the primary and secondary rays.

Although an ancient phenomenon, cosmic rays because of their small effects went *unrecognized*¹⁰ until the end of the last century and the beginning of the present century. The

total energy of all cosmic rays arriving ¹¹ in the atmosphere per unit time is only about 10 microwatts per square metre, roughly ¹² equal to the energy in starlight and a 100,000,000 times less than the radiant ¹³ energy from the sun. Therefore, cosmic rays do not affect ¹⁴ life on the earth appreciably in any direct, physical way.

The discovery of the existence of cosmic radiation was a consequence of certain experiments undertaken ¹⁵ on the conductivity of gases. It was believed, on theoretical grounds, that a gas should be non-conducting in the absence of radiation, provided that the potential gradient across it was not so high that sparking ¹⁶ could take place. Curiously enough ¹⁷, experiments undertaken to test this hypothesis showed that a sample ¹⁸ of air in a closed vessel always exhibited a small electrical conductivity in spite of every precaution ¹⁹ to eliminate ²⁰ radiation, and prevent leakage along the insulators. The conductivity was observed to increase in proportion to the pressure of the enclosed ²¹ air, and to be diminished ²² by surrounding the vessel with thick shields; therefore, it seemed to be due to some kind of radiation continually entering the vessel through the walls. If so, this was a more penetrating radiation than had ever been known before.

Various suggestions were advanced to explain this phenomenon, among them residual * radioactivity of the shielding materials, and spontaneous ** ionization due to the thermal motion of the gas molecules.

That these explanations were not sufficient to account for the observed phenomena was shown by the experiments of some scientists who, in the years immediately ²³ prior to 1914, sent ionization chambers up with balloons, and measured the variation of the conductivity of the contained gas as a function of altitude. They were able to show that conductivity, and hence the ionization produced in the gas, somewhat ²⁴ decreased up to an altitude of about 2,000 feet above sea-level, indicating sources on the earth, and thereafter ²⁵ increased steadily up to the highest altitude which their balloons reached (30,000 feet), at which altitude it was many times greater than at sea-level. From this experimental result it was clear that, whatever the source, the whole of the residual ionization observed at sea-level could not be attributed ²⁶ to the radioactivity of the earth, nor can it be a property of the gas with which the ionization chamber is filled. That the immediate source of the radiation is not the sun is a consequence of the fact that ionization was the same, whether day or night, and was therefore not due to rays coming directly from the sun.

Although the above conclusions were confirmed ²⁷ by a number of physicists in the years immediately prior to the outbreak of the

* residual — остаточный

** spontaneous — спонтанный, самопроизвольный

first world war, it was not until 1926 that the existence of the cosmic radiation was generally accepted.

The distinctive feature²⁸ of cosmic rays is a unique concentration of energy in single elementary particles. Though apparently²⁹ similar in substance (mainly protons or nuclei of hydrogen) to the rays that cause aurora borealis*, primary cosmic rays have individual energies about a million times greater, and penetrate far into the atmosphere and occasionally³⁰ deep into the earth. Whereas³¹ the average quantum energy in starlight is merely³² 2 ev, the average energy of single particles in the primary cosmic radiation is 10^{10} times greater, or about 20 BeV**.

Such particles are not deflected by the electric forces that normally keep atoms and particularly the nuclei of atoms apart; they can penetrate through the middle³³ of any nucleus and cause it to disintegrate and they can create out of their kinetic energies new types of unstable particles which otherwise would not exist naturally on the earth. The cosmic rays do not obey³⁴ Newton's laws of mechanics as do slower-moving bodies, but provide extreme examples requiring application of the principles of relativity.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите эллиптические конструкции придаточным предложением. Приступая к переводу, сначала найдите подлежащее всего предложения, с тем чтобы знать, какое слово должно быть подлежащим придаточного предложения (§ 101).

Образец:

When in rapid motion, electrons can produce...

Когда *электроны* быстро движутся, они могут создавать...

1. Though invisible in themselves, ultra-violet rays can be utilized in the production of light.
2. Although a medium-small star, the Sun is over a thousand times as massive as Jupiter.
3. When at its greatest distance from the Earth, Mars is about half as bright as the Polar star.
4. Once in the air, the jet aircraft is relatively simple to fly, owing to the absence of some controls.
5. Although a tremendous achievement, the first rocket-powered gyro-controlled missile was primitive by comparison with many modern guided missiles.

* aurora borealis — полярные сияния

** A BeV is equal to 1,000,000 electron volts

6. The airships are filled with helium, which, although heavier than hydrogen, is non-inflammable¹.

7. Though highly tenuous² at this altitude, the atmosphere is still sufficient to exert an influence on the rocket.

8. Although the simplest form of the propulsion unit imaginable, the rocket can assume a large variety of forms.

9. Once in space, the vehicle moving at high velocity, say in a satellite orbit, requires no further propulsion to stay aloft³.

10. With the launching of Sputnik I on October 4, 1957, the Earth acquired an artificial satellite which, though of only temporary duration, marked the beginning of "the space age".

2. Переведите группы слов и предложения. Обратите внимание на выделенные эллиптические конструкции и запомните возможные соответствия при переводе их на русский язык (§ 102).

Образец:

Whatever the shape of the magnet, it has two poles.

Какова бы ни была форма магнита, он имеет два полюса. Независимо от формы каждый магнит имеет два полюса.

1. **Whatever the method**, the calculation must be precise...

2. **Whatever the weather conditions**, the airport...

3. **No matter how different** in detail, many of the projectiles...

4. **The radiation, no matter how small**, effects...

5. **However great** the pressure changes, the density of the flow...

6. The general principles of operation of automatic voltage regulators are similar **whatever the size** and type.

7. **No matter how complicated**, the problem of space navigation is expected to be finally solved.

8. **However thin** the shock wave, the air speed is reduced and the air heated.

9. **Whatever the source, whatever the method** of production, the electrons produced by one method are the same in all respects as those produced by another method.

10. **No matter what the nature** of the surfaces that are moving over each other, there is always some opposition to the motion.

11. **Whatever the shape and size** of the body, — it is always possible to find one point at which a force equal and opposite to the weight of the body can be applied so that the body will remain at rest.

¹ non-inflammable — невоспламеняющийся

² tenuous — разреженный

³ aloft — наверху; в полете

3. Переведите группы слов и предложения, содержащие эллиптическую конструкцию "If any". Обратите внимание на способ перевода этой конструкции (§ 104).

Образцы:

The nacelles, if any...

Мотогондолы, если таковые имеются...

The nucleus determines the radioactive properties, if any, of the atom.

Ядро определяет радиоактивные свойства атома, если он таковыми обладает.

1. The boosters, if any,...
2. The cooling device, if any, ...
3. The gravitational attraction, if any, ...
4. The radioactive products, if any, ...
5. The effect of weightlessness appears to have given Gagarin little discomfort, if any.
6. The observations provide definite evidence that the atmosphere on Mercury must be of extreme rarity, if any at all.
7. With no free oxygen and little, if any, water, Mars still appears to have some evidence of life.
8. The next problem of importance which occupied most of the investigators in this field was to determine the long-wave limit, if any, of the infra-red radiation.

4. Переведите предложения, содержащие эллиптические конструкции.

1. Although a theoretical possibility, the nuclear rocket motor is not likely to be used within the next few years.
2. Electrical disturbances, no matter how weak, produce radio waves which are picked up by the antenna of the receiver.
3. The total wing area will be determined by the gross weight of the airplane, the airfoil used, the type of high lift device, if any, and the required landing speed.
4. Galileo proved that objects fall at the same speed whatever their weight.
5. Though a quarter of million miles away, the Moon is our nearest neighbour in space.
6. When visible, sunspots are the most interesting objects on the solar surface.
7. The light of the Sun is very intense, it is about 900 million times that received from Venus, when at her brightest.
8. No matter how complex the machine, it is always made up of standard simple machines.
9. Electric charge, although not directly observable, makes itself evident by such means as the mechanical force between charged bodies, or the heating, magnetic or chemical effects associated with its motion as an electric current.

10. The first observations of stellar ultra-violet radiation have already been made, and although preliminary¹ have yielded some surprising results.

5. Переведите предложения со словами типа in which year в значения союза.

Обратите внимание на то, что слово which, входящее в состав союза, переводится местоимением «этот» в соответствующем падеже.

1. High-altitude flight to explore and record temperature, humidity and terrestrial magnetism were made as early as 1804, in which year a scientific ascent as high as 2,550 metres was made.

2. It was estimated that the vehicle would make over 200 circles of the globe (over a period of 12 days) during which time it would transmit to Earth information of conditions in the upper atmosphere.

3. Capacity may exist as a charge on a single conductor that has no electrical relationship to any other, in which case it is referred to as 'self capacity'.

4. The term 'high-speed flight' is applied especially to supersonic speeds, in which field many of the problems are as important to rocketry as to aeronautics.

6. Повторение. Переведите предложения, обращая внимание на перевод средств связи и причастных конструкций.

A. Средства связи (§ 68—74)

1. The nuclear rocket does not use any combustion process. Rather, the hot exhaust gas is developed by passing a working fluid through a fission reactor. Liquid hydrogen is the propellant most often considered for a nuclear rocket because it yields the lightest exhaust gas possible. The hydrogen could be stored in liquid form in a single tank and forced into a reactor by a pump. After being heated in the reactor, it would be exhausted through a conventional rocket nozzle to obtain thrust.

2. In attempting to discuss whether life can exist on any other world, we come up against the difficulty that we have no certain knowledge of how life originated on the Earth. All the innumerable substances that we find on the Earth are the result of different combinations of some of the ninety-two varieties of atoms. The same atoms are found also in the Sun, in the stars in the remote universe. Conversely, no element is known to occur in the Sun or the stars that has not been found on the Earth.

3. Over a sufficiently long interval of time, the amount of energy returned from the Earth to space must be equal to that which has been received, otherwise there would be a noticeable change in physical conditions at the ground.

¹ preliminary — предварительный

4. It is easy to understand the non-self-maintained gas discharge. Here light or heat liberates electrons from metal surfaces; alternatively, X-rays or radioactive radiations generate in the gas the electrons and positive ions that carry the current.

5. A variable electric field is always accompanied by a magnetic field; and conversely, a variable magnetic field is accompanied by an electric field.

6. Our primary interest in absorption spectra is due to the evidence they give of atomic structure and processes in gases. Furthermore, an investigation of the absorption of light will provide a chance to compare the spectra of gases, liquids and solids.

Б. Причастие + инфинитив (§ 25)

The physical and chemical characteristics of the planetary atmosphere strongly influence entry characteristics. To gain an appreciation of the gas dynamic forces and heating involved, a knowledge of the density variation in the atmosphere is sufficient. The atmosphere of Venus, estimated to consist of about 10 per cent nitrogen and 90 per cent carbon dioxide, is somewhat more dense than the Earth's atmosphere, but varies in a similar way with altitude. The atmosphere of Mars estimated to contain about 95 per cent nitrogen and 5 per cent carbon dioxide, is appreciably less dense than the Earth's atmosphere at surface level, but drops off much more gradually with increasing altitude and is actually more dense at high altitudes. The more gradual density variation on the Martian atmosphere makes it "softer," so that it would involve a comparatively less severe entry.

В. Причастные обороты с союзами (§ 22)

1. The H_α line of hydrogen appearing in the early stages of auroral¹ phenomena is considerably broadened when viewed towards the magnetic horizon and both broadened and displaced when viewed towards the magnetic zenith.

2. On several occasions, while discussing absorption spectra we have mentioned the "lifetime of an excited² state" of an atom.

3. If the electron is at rest, it will not be affected by a magnetic field, but when moving it behaves like a conductor carrying a current, and experiences a corresponding force.

4. Recall that Planck believed that light, although emitted from its source discontinuously, travels through space as an electromagnetic wave.

5. Because of its very small mass, the electron has the advantage of keeping its kinetic energy when suffering elastic collisions.

¹ auroral — вызванный полярным сиянием

² excite — возбуждать

Лексические упражнения

7. Переведите предложения, обращая внимание на перевод выделенных глаголов.

encounter (10,4)

1. Once a solid propellant motor is ignited, it is difficult to turn it off, a limitation **not encountered** in the liquid propellant engine.

2. When radiant energy **encounters** a body or matter, part of the energy is stopped or absorbed by the matter.

3. An object becomes weightless when it is free to move through space without **encountering** resistance.

impart (10,5)

4. The final stage of this multiple-rocket **will impart** roughly fifty per cent of the required velocity to the satellite itself.

5. In the case of a rocket, the greatest possible quantity of thermal energy **must be imparted** to the matter ejected.

6. Our only interest in the jet forces concerns the accelerations, both linear and angular, that they **impart** to the rocket.

eliminate (10,20)

7. In order to **eliminate** the drag of the landing gear during the flight, the wheels are usually retracted into the body or wings.

8. In the principle of momentum the internal forces are **eliminated**; in the principle of energy they are **not eliminated**, except in the special case where they do no work and so contribute nothing to weight.

8. Переведите предложения, обращая внимание на близкие по значению наречия **finally** (4,4), **ultimately** (10,9), **eventually** (10,8).

1. Table II shows the complete series of radioactive elements, from uranium through radium and radon **finally** to lead¹ which is not radioactive.

2. Heat produced by a radioisotope power system must **eventually** be radiated from the vehicle.

3. Some specialists believe that we shall **ultimately** have to depend on the radiant energy that we receive directly from the Sun.

4. Mendeleyev left blank spaces in his table predicting that eventually the missing elements would be found and described their properties.

9. Переведите предложения, обращая внимание на многозначность выделенных глаголов.

recognize (10,10)

1. That some force is necessary to hold the planets in their elliptical orbits **had been recognized** before Newton.

¹ lead — свинец

2. That kinetic energy could be turned into potential energy was recognized in the early days of mechanics.

3. Radar has been defined as the art of detecting by means of radio echoes the presence of objects, determining their direction and range and recognizing their character.

4. The technician of an airplane must have sufficient knowledge of the system to enable him to recognize and meet the electrical emergencies that may occur during flight.

arrive (10,11)

5. The delegation arrived just in time to take part in the conference.

6. In general celestial¹ mechanics arrives at its results by making use of a very far-reaching simplification.

10. Переведите предложения. Различайте глаголы to effect «существлять» (10,7) и to affect «влиять» (10,14).

1. On April 12, 1961, the Soviet Union effected the first manned space flight in history.

2. The decrease of density of the air affects the power of the engine.

3. Some mechanism is needed to inject the propellant into combustion chamber, and this is effected by the pressurization² of the propellant tanks.

4. The intensity of the cosmic ray radiation is greatly affected by solar activity.

5. Protons, being positively charged particles, can be affected by electric as well as magnetic fields.

6. Radioisotope thermionic systems are unaffected by space radiation.

11. Переведите предложения. Различайте слова somewhat (10,24) и something.

Заметьте, что somewhat переводится словами «несколько», «до некоторой степени», а something означает «нечто», «что-то».

1. Friction decreases somewhat with increasing speed.

2. Atoms with the same atomic number may have somewhat different weights and still show almost identical physical and chemical properties.

3. The tube used by Thomson in 1898 in studying cathode rays was something like the picture tube in a modern television receiver.

4. The atom is something very different from the hard solid sphere that it was formerly believed to be.

12. Переведите предложения, содержащие слова типа thereafter, therefrom (10,25).

Заметьте, что эти слова состоят из слова there и какого-либо служебного слова after, from и т. д. Эти составные слова следует переводить,

¹ celestial — небесный

² pressurization — герметизация

начиная со второго компонента, а первый компонент (*there*) переводить словом «таковой (этот)» в соответствующем падеже.

thereafter: вслед за этим, после этого

therefrom: из этого

1. The high-velocity jet from a jet engine may be considered as a continuous recoil¹ imparting force against the airplane in which the engine is installed, thereby producing thrust.

2. Scientists had to put forward various hypothesis to account for the movements of planets therewith.

3. A molecule is a complicated structure with atoms and electrons therein.

4. When the primary cosmic rays strike the air surrounding the earth, they collide with oxygen and nitrogen molecules in their paths, showers² of secondary particles being produced thereafter.

5. We can study only a very small class of meteor orbits, and to draw therefrom conclusions about the whole assemblage of meteoric bodies in the solar system.

13. Переведите предложения, обращая внимание на многозначность прилагательного *apparent* (10,29).

1. In recent years the value of infra-red analytical methods has become apparent to industry.

2 If energy changes are followed backward in the past, it becomes apparent that almost all the energy available to us has come ultimately from a single source — the Sun.

3. Centrifugal force is only an *apparent* force, which arises because of the tendency of moving objects to travel in straight lines.

4. Apparent movements of the planets are explained as combinations of their actual motions around the Sun and our shift³ of position as the Earth moves.

14. Переведите предложения, обращая внимание на перевод слов *occasion* *n.*, *occasional* *a.*, *occasionally* *adv.*, происходящих от общего корня (10,30).

1. On the occasions when the Moon passes directly before or behind the Earth, an *eclipse*⁴ occurs.

2. To-day a motor-car engine will run thousand of miles without needing any attention to the engine apart from occasional oiling.

3. That water exists on Mars is indicated by the white polar caps and by occasional clouds, but its amount is very small.

4. Most comets are visible only telescopically, but occasionally one becomes visible to the unaided eye.

¹ recoil — отдача

² shower — ливень

³ shift — изменение, сдвиг

⁴ eclipse — затмение

15. Переведите предложения, обращая внимание на различные значения предлога *by*:

1. «посредством», «путем (чего-л.)»; 2. выражает отношения, передаваемые творительным падежом (кем? чем?); 3. «к (какому-то времени)»;
4. «на (какое-то количество)»; 5. «по» «согласно (кому-л. или чему-л.)»;
6. «у», «возле», «около (чего-л.)»

1. If the thrust generated by the jet engine is independent of the forward speed of the aircraft, we could convert the thrust to horsepower by multiplying the airspeed in miles per hour by the thrust and dividing the resultant product by 375.

2. By 1914 the existence of radioactivity and the fact that atoms of one kind of element could change into another by emission of alpha or beta rays was well known.

3. By Newton's Second Law of motion, the product of a mass multiplied by its acceleration is equal to the unbalanced force causing the acceleration.

16. Повторение. Переведите предложения, обращая внимание на перевод слова *account* и сочетаний с ним:

to give account, to take account, to take into account, account is taken, on account of, to account for

1. Maxwell's theory included an *account* of the propagation of electromagnetic waves in a medium such as glass. He was able to show that it gave a general *account* of the phenomena of reflection and refraction.

2. This book provides an *account* of the structure and characteristic activity of the sun.

3. This is a new edition¹ of the book, with much new information added to *take account* of recent developments.

4. The difference between velocity and speed is that speed refers only to distance covered by an object as it moves; velocity also *takes into account* the direction in which the object is moving.

5. *Account* must be taken of forces which come into play when acceleration exceeds the specified value.

6. On account of the complicated nature of the resistance of the air, an accurate mathematical prediction of the trajectory of a projectile is difficult.

7. The laws of classical mechanics were unable to account for simple experimental facts concerning the behaviour of atomic systems.

8. Friction in liquids must be accounted for in this experiment.

Словообразовательное упражнение

17. Переведите следующие глаголы, учитывая, что префикс *de-* придает слову значение обратного действия, а префикс *fore-* соответствует значению приставки «пред-»:

demobilize, decode, deform, demagnetize, demilitarize, foresee, foretell, forecast

¹ edition — издание

Упражнение на перевод терминов

18. Переведите сложные термины, в которых каждые два существительных, стоящих рядом, выражают одно понятие.

combustion chamber surface area
(камера сгорания) (площадь поверхности)
площадь поверхности камеры сгорания

Английский термин	Область применения
gas turbine power plant	двигатели
radio navigation land station	радио
picture signal carrier wave	телевидение
air defence guided missile	ракетная техника
radio-frequency high-voltage power supply	радио
pulse-type high-voltage power supply	»
flight-path deviation indicator	навигация
pulse-type radio altimeter	радио

Упражнения в чтении

19. Прочтайте следующие глаголы с префиксами *de-*, *un-* и *fore-*, соблюдая правильное ударение:

de'mobilize	'un'arm	fore'see
'de'code	'un'close	fore'tell
de'form	'un'fix	'forecast
'de'magnetize	'un'lock	
'de'militarize		

20. Прочтайте следующие слова из основного текста:

cosmic [kə'zmi:k]	residual [ri'zidjuəl]
unrecognized [ʌn'rekəgnraɪzd]	spontaneous [spɒn'teɪnɪəs]
roughly ['rʌflɪ]	immediately [ɪ'mi:dʒətlɪ]
radiant ['reɪdɪənt]	attribute ['ætrɪbju:t]
curiously ['kjūəriəsli]	aurora borealis [ɔ:rə'bɔ:reɪlɪs]
hypothesis [haɪ'pɒθɪsɪs]	whereas [wɪ'ær'æz]

21. Прочтайте предложения из основного текста, содержащие эллиптическую конструкцию. Соблюдайте правильное ударение и паузы.

1. 'High in the 'atmosphere, | 'most of the 'primary 'cosmic 'rays co'llide 'violently...

2. Al'though an 'ancient phe'nomenon, | 'cosmic 'rays...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. EXPLORING OUR SUN *

(Для перевода без словаря)

How close to the Sun could a man-carrying ship approach in safety? The answer to this question depends upon the skill of the refrigeration experts; my guess¹ is that five million miles is an attainable distance even with a crew-carrying vehicle.

There is one useful trick² we may employ to get quite close to the Sun in (almost) perfect safety. This is to use some asteroid or comet as a sunshade, and the best choice known at the moment is the little flying mountain named Icarus.

This minor planet travels on an orbit that every thirteen months brings it within a mere 17 million miles of the Sun.

Occasionally, it also passes quite close to Earth; it was within 4 million miles of us in 1968.

Though small in diameter (approximately one or two miles), Icarus casts a cone of shadow³ into space, and in the cold shelter⁴ of that shadow, a ship could travel safely around the Sun.

Small though it is, this minor planet must weigh about 10 billion tons.

There may be other asteroids that go even closer to the Sun, if there are not, we may undoubtedly one day make them do so by a nudge⁵ at the right point in the orbit.

It is interesting to consider how long the travel would take. Being a rather small star, the Sun is "only" three million miles in circumference⁶. A satellite just outside its atmosphere would move about a million miles an hour, so would circle it every three hours.

Magneto-hydrodynamics is concerned with the handling of very hot gases in magnetic fields. Already it has enabled us to produce temperatures of tens of millions of degrees in the laboratory, and ultimately it may lead us to the limitless power from hydrogen fusion.

I suggest that, when we have acquired some real mastery of this infant science, it will also give us magnetic and electric shields that can provide far more effective protection against both temperature and pressure that can be obtained from any walls of metal.

¹ guess — предположение

² trick — прием, уловка

³ cast a cone of shadow — бросать тень в виде конуса

⁴ shelter — убежище, прикрытие

⁵ nudge — толчок

⁶ circumference — окружность

* A. Clark. "Profiles of the Future".

2. DIGITAL COMPUTERS

(Для перевода со словарем)

Computer equipment may be divided into two major classifications: analog and digital.

A digital device operates directly upon numbers. Its basic operation is counting, whether the counting of beads, of gear teeth, or of electrical pulses. All of the mathematical operations are performed by counting or addition. In digital computation a problem is broken down into a series of arithmetic steps which are completed in sequence to arrive at the solution. This method is known as a sequential operation and is in effect the same as if pencil and paper were used to carry out arithmetic operations. The difference, of course, is that the tremendous speed and memory capacity of the digital computer permit complex calculations to be made in a fraction of a second. A point to emphasize is that mathematical operations and the method by which the computer derives a final result have little, if any, resemblance to the actions of the physical problem under study.

The accuracy of a digital computer solutions is theoretically unlimited. The precision of a digital computer is readily increased by providing additional decimal places in the numbers throughout the equipment. However this both increases the cost of the equipment and decreases the speed of the computation.

Because of its numerical nature, the digital computer is well suited to problems involving the processing of large masses of data where single calculations are repeated over and over again. Consequently, digital machines find their widest use in scientific problems involving statistical analysis and in business applications such as accounting and record keeping.

Digital computers are also being applied to the control of industrial processes. The computer generally performs supervisory function by evaluating process conditions against desired performance criteria and determining changes to provide optimum operation. More recently, digital computers have been used to provide direct digital control (DDC) of individual process variables.

3. THE SOLAR SYSTEM

(Для перевода со словарем)

The Sun. Although a medium-small star, the Sun is over a thousand times as massive as Jupiter, and over 300,000 times as massive as the Earth. Its energy output, as light and heat, is extremely constant, probably varying no more than about 0.5 per cent from the average value. However, it is much more variable in its production of ultra-violet radiation, radio waves and charged particles. At frequent intervals, extremely intense solar outbursts of charged particles (cosmic rays) have been observed.

All usable forms of energy on the Earth's surface, with the exception of atomic and thermonuclear energy, are directly or indirectly due to the storing or conversion of energy imparted by the sun.

The Planets. The planet closest to the Sun, Mercury, is difficult to observe because of its proximity to that body; hence, our knowledge of its physical characteristics is less accurate than of some of the other members of the solar system. Mercury has no moon, and its mass is about one-twentieth that of the Earth.

Mercury is not known to have any atmosphere, nor would a permanent gaseous envelope be expected to occur under the conditions existing on the planet.

In dimensions and mass Venus is somewhat smaller than the Earth. The interplanetary stations Venera 5 and Venera 6 reached the planet on May 16 and 17, 1969 and made measurements of Venus night-side atmosphere in the equatorial plane. The temperature, density and pressure results obtained with Venera 5 and Venera 6 provide a tentative model of the night-side planetary atmosphere. According to Venera 5 the surface pressure is 142 atm and the corresponding temperature 830° K.

Much more complete information is available about Mars. With a diameter half-way between that of the moon and the Earth, and a rate of revolution and inclination of Equator to orbital plane closely similar to those of the Earth, it has an appreciable atmosphere and its surface markings exhibit seasonal changes in coloration. Its white polar caps, appearing in winter and vanishing in summer are, apparently thin layers of frozen water fractions of an inch to several inches in thickness.

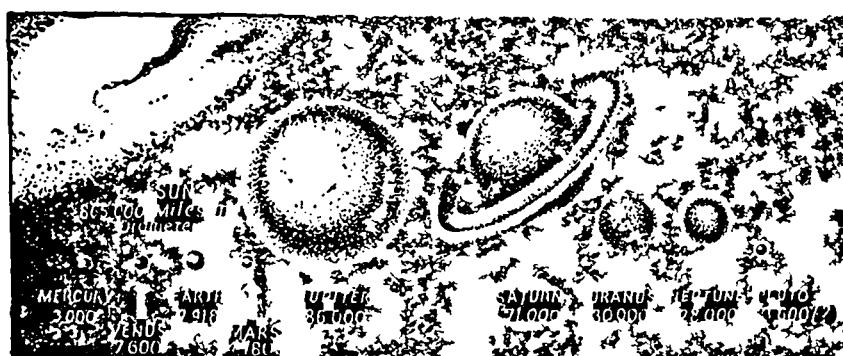
At opposition, that is, when the two planets lie in the same direction from the Sun, the approximate distance between Earth and Mars ranges from 35 million to 60 million miles.

Bleak and desert-like as Mars appears to be, with no free oxygen and little, if any, water, there is some evidence of life. According to the hypothesis of a well known Soviet scientist, Prof. G.A. Tikhov, the seasonal color changes, from green in spring to brown in autumn, may suggest vegetation.

Mars 2, a Soviet Automatic Interplanetary Station, was sent to Mars on May 19, 1971. It was followed by Mars 3, sent on May 28, 1971.

Since November 27 and December 2, 1971, the two Soviet probes are orbiting Mars and have taken photographs of its surface giving important data on planet's geological structure.

The four members of the group of the giant planets have so many characteristics in common that they may well be treated together. They are all massive bodies of low density and large diameter and they all rotate rapidly.


Because of their low densities (0.7 to 1.6 times the density of water) and on the basis of spectral information, they all are

thought to have a "rock-in-a-snowball" structure — that is, a small dense rocky core surrounded by a thick shell of ice and covered by thousands of miles of compressed hydrogen and helium. Methane and ammonia also known to be present are minor constituents. Because of the low intensities of solar radiation at the distances of the giant planets, temperatures at the visible upper atmospheric surfaces range from -200° to -300° F.

Almost nothing is known about Pluto, the most distant member of the known solar system, except its orbital characteristics and the fact that it is extremely cold, with a small radius and a mass about 80 per cent that of the Earth.

The Planets

Planet	Mean Distance from Sun (millions of miles)	Period of Revolution (sidereal)	Period of Rotation (sidereal)	Mean Diameter (miles)	Mass (Earth = 1)
Mercury . . .	36.0	88 days	88 days	2,900	0.054
Venus	67.2	224.7 d	224.7 d?	7,600	0.815
Earth	92.9	365.2 d	23 ^h 56 ^m	7,913	1.00
Mars	141.6	686.98 d	24 ^h 37 ^m	4,200	0.11
Jupiter	483.3	11.86 yr	9 ^h 55 ^m	86,800	318
Saturn	886.2	29.46 yr	10 ^h 38 ^m	71,500	95
Uranus	1783.0	84.01 yr	10 ^h 40 ^m	29,400	15
Neptune	2794.0	164.8 yr	12 ^h 40 ^m	28,000	17
Pluto	3671.0	247.7 yr	6.39 d	3,700	0.1?

The sizes of the planets (but not their distances) are diagrammed in relation to a section of the Sun.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какая конструкция называется эллиптической (§ 100)?
2. Какие элементы предложения чаще всего опускаются (§ 100)?
3. Где раскрывается лексическое значение опущенного подлежащего: A bullet cannot alter its course, while in flight; When in rapid motion, electrons can...
4. Укажите особенность перевода эллиптической конструкции с союзом *whether*: The aeroplanes, whether light or heavy...
5. Назовите возможные варианты перевода эллиптических конструкций с уступительными союзами: whatever the shape of the magnet ...; no matter how weak the impulse ...; ... however remote the planet ...
6. Как переводится эллиптическая конструкция *if any*?

УРОК ОДИННАДЦАТЫЙ

Текст: The Nature and Origin of the Primary Cosmic Radiation.

Грамматические основы перевода

Слова, словосочетания и обороты, служащие для выражения отношения автора к высказываемой мысли и для ее уточнения (§ 75—81).

Перевод конструкции с двойным управлением (§ 105—107).

Лексические основы перевода

Перевод слов: *borne, whereby, arise, rise, raise, capture, trap, initiate, originate, agree, speculate.*

Перевод глагола *to depend* с двумя предложными дополнениями.

Перевод предлога *over*.

Перевод многозначного служебного слова *Just* и словосочетаний с ним (упр. 10).

Перевод слов с префиксами *inter-, mal-, mis-* (упр. 23).

ТЕКСТ

THE NATURE AND ORIGIN OF THE PRIMARY COSMIC RADIATION

Once the existence of the cosmic radiation was established work on its properties greatly intensified. Primary cosmic rays have been registered by *balloon-borne*¹ and *rocket-borne* cloud chambers*, Geiger and other tube counters, and in photographic emulsions called nuclear emulsions.

Of the various known types of particles only nuclei, protons, photons and electrons could be primary cosmic radiation. Mesons and neutrons are unstable, and would decay before they reached the earth. Electrons, positrons and photons were *ruled out*² as possibilities by some experiments in 1950. It was found that these components, if present at all, comprise less than 0.5 per cent of the primary radiation of more than 1 Bev energy. When account was taken of the production of these particles in the upper atmo-

* *cloud chamber* — камера Вильсона

sphere as secondaries to nuclear processes, it was possible to reduce the upper limit to 0.25 per cent.

With neutral particles, photons, positrons and electrons ruled out, and the primaries known to be stable and positively charged, the most likely conclusion is that they are protons (the nuclei of hydrogen atoms) and possibly the nuclei of heavier atoms. This is indeed³ the case.

In the extreme relativistic range of velocities within which the primary radiation arrives in the atmosphere, it is not possible to measure directly the masses of particles passing through, or causing interactions⁴ in, nuclear emulsions or counters, but, within certain limits, it was possible to determine their energies and charges.

The other very important field of cosmic ray research was the study of the intensity of the radiation and its variation with place and time of observation. Time variations in intensity were found to be small, (if any) leading to the conclusion that the immediate source of radiation is not within the solar⁵ system. But the correlation⁶ between certain large solar flares⁷ has led to the idea that the sun is in fact⁸ responsible for at least a part of the lower energy radiation.

That the whole of the primary radiation cannot originate from the sun, nor be accelerated in the rapidly varying magnetic fields associated with sunspots⁹ and solar flares, is clear from energy considerations. For, even if one supposes that the whole of the low energy radiation originates from the sun, one is forced to assume some sort of suitable magnetic field around the solar system, which captures¹⁰ the radiation in such a way that it becomes more or less¹¹ uniformly distributed in direction. Even assuming a rather high value for such a field, it would be difficult to hold imprisoned particles with energies as high as 10^{10} Bev known to exist in the cosmic radiation.

If one is going to give some account of the acceleration of the particles comprising the whole of the energy spectrum of the cosmic radiation, one must find some mechanism whereby¹² particles with energies of 10^{10} BeV could be produced or, to put it in another way¹³, accelerated in interstellar space. Such a mechanism was suggested by Fermi in 1949. On his hypothesis the radiation arises¹⁴ from the stellar¹⁵ magnetic disturbances¹⁶, and is further accelerated by the interstellar magnetic fields, so that the whole of it is trapped¹⁷ within the galaxy*. He showed that particles with initial¹⁸ energies of a few BeV could be accelerated in the interstellar magnetic fields to very much higher energies.

The Fermi process may be described shortly as follows: the particles of the cosmic radiation which have escaped from the

* galaxy — галактика

immediate neighbourhood¹⁹ of the stars in which they are produced move in spiral paths about the lines of force of the interstellar fields. These magnetic fields originate from, and are coupled²⁰ to, turbulent²¹ motions of the interstellar clouds of ionized gas. The particles are, so to say²², "locked" to particular lines of force and must follow the curvature of these in space, so that there is an interchange²³ of energy between the cosmic ray particles and the interstellar clouds. Now, Fermi could show that, if one assumes that the motion of the clouds is quite random²⁴ in all directions, the net²⁵ result is that the cosmic ray particles gain energy exponentially *. On the other hand, a particle can lose its energy again if it is involved in a nuclear collision in interstellar space, which will, on the average, happen about once in 6×10^7 years. The equilibrium²⁶ between these two effects results in an energy spectrum which falls off according to a power law with increasing energy, and by using reasonable quantities²⁷ for the various parameters which enter into the theory one may obtain a good agreement²⁸ with the experimental energy spectrum of the primary radiation.

However, it should be pointed out that there are few fields in physics or astrophysics, within which the accepted ideas change so quickly or so radically as that of the origin of the cosmic radiation. And nowadays there is much speculation²⁹ as to this problem. It is, therefore, necessary to treat any ideas on this subject with very considerable reserve.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, обращая внимание на перевод выделенных слов, словосочетаний и оборотов, выражющих уверенность («конечно», «само собой разумеется»). При переводе опирайтесь на значения слов, входящих в состав этих сочетаний (§ 76).

1. To be sure, these various methods may be combined, as we shall see later, to give a more complete analysis of the ionization phenomena occurring in matter.

2. Needless to say, both analog and digital equipment have their advantages and limitations.

3. True, the explosion of the bomb causes considerable air displacement.

4. To tell the truth, neither of these methods has been applied.

5. It is true that in the course of their descent cosmic rays are subjected to considerable disintegration.

6. There is every indication that the mass and weight of the air changes constantly with the seasons of the year, geographic locations, temperature and altitude variations.

* exponentially — матем. экспоненциально

7. It is a safe assumption that improvements in construction will play a great part in the reduction of the all-up weight of future space vehicles.

8. It is safe to assume that near the Earth's surface all meteoritic material travels in the velocity range from 11.3 to 73 m/sec.

9. To be sure, Reynolds was not the first to observe and analyse the phenomena of turbulent flow.

10. An automatic computer, it is true, may be instructed to perform the change automatically.

11. Needless to say, studies of the structure and chemical composition of meteorites provide us with exceedingly important information concerning the nature of matter.

12. Formerly, meteors were often called falling stars or shooting stars. To say the truth, there is nothing at all in common between real stars (distant suns) and meteors that glow through the Earth's atmosphere.

13. It is certain that cosmic rays studies yield very important facts about the upper layers of the atmosphere.

14. To be sure, the world's supply of petroleum, if we keep on burning it as fast as we do to-day, may be used up in the near future.

2. Переведите предложения, обращая внимание на перевод слов, выражающих вероятность («по-видимому», «очевидно») (§ 77).

1. Perhaps, one of the most outstanding achievements of the 20th century is the launching of the artificial satellite.

2. π -meson and μ -meson can have positive or negative charges. They are apparently created by the primary cosmic ray in a nuclear explosion process.

3. Rutherford noticed as early as 1914 that when alpha particles were shot into nitrogen, some high-speed long-range particles, presumably protons, were out.

4. High-speed flight now implies¹ flight at speeds of the order of the speed of sound in air, or faster — say, 700 miles per hour or more.

3. Переведите предложения. Обратите внимание на перевод выделенных слов, словосочетаний и оборотов, дающих оценку высказыванию с точки зрения его желательности или нежелательности («к счастью», «к сожалению», «к нашему удивлению») (§ 78).

1. Happily, the probability of a rocket ship encountering a random meteor is not very great.

2. It is most unfortunate that our present understanding of the physical phenomena which underlie the emission of electrons from the cathode of a vacuum tube is still insufficient.

3. Curiously enough, a very small amount of material is required to cause a visible emission of light.

¹ imply — предполагать

4. Strange enough, nearly half a century passed before any trace of the Tunguska meteorite was found.

5. It is hardly surprising, that in modern radar systems, more and more emphasis is being placed on the accurate control or knowledge of transmitter phase.

6. Переведите предложения, обращая внимание на перевод слов и словосочетаний, служащих для выделения или уточнения («вообще говоря», «точнее говоря», «в известном смысле», «в лучшем случае» и т. д.) (§ 79).

1. Generally speaking, we may call any waves of length less than 100 meters short waves, although the tendency is to apply that term only to waves of 50 meters or less.

2. Strictly speaking, the tail plane is not a control surface.

3. In this book we shall be concerned with the progress made on aircraft structure, or more generally, in aircraft design.

4. All the electronic computers may, in a general sense, be said to have the same logical design and they consist of five main parts.

5. In a broad sense, electronics may be said to be concerned with the emission of electrons, the interaction of electrons with electric and magnetic fields, the flow of electrons in various kinds of circuits and the production and interaction of electromagnetic radiation.

6. A large military searchlight is a photon rocket in a sense.

7. Wavelengths can be measured with an accuracy of 0.001 Å at best.

8. Using this method of measurement we can get only average figures at best.

9. The number of hyperbolic meteors, coming from interstellar space, is at most 1 per cent of the total quantity.

10. Another ten years, at the most, will see nuclear-powered aircraft in the air.

11. There are certain processes for which D. C. is either essential or at any rate desirable.

12. It is not possible to predict all the fields in which we shall use atomic energy. At any rate, its application will be numerous.

13. Most organic substances fluoresce to some extent.

14. The light reflected from any material is in general polarized to some extent.

15. Much research work has been and is being carried out on activated inorganic "phosphors," i.e. compounds that fluoresce and also phosphoresce to some degree.

6. Переведите предложения, обращая внимание на перевод словосочетаний to say nothing of и not to mention, выражающих ограничение («не говоря уже о чем-л.») (§ 79).

to say nothing of

1. Not all of the aircraft are suitable for high-speed flight to say nothing of helicopters.

2. Photography has become an effective tool in the study of meteors **to say nothing of** radar.

3. One of the advantages of radar techniques in studying the upper layers of the atmosphere from meteor data is the speed with which they are obtained, **to say nothing of** the possibility of conducting observations in the day-time and bad weather.

4. Meteors represent a definite hazard¹ to rocket ships, for even the smallest meteoric particles are capable of penetrating the skin of such a vehicle **to say nothing of** large ones.

not to mention

5. Jupiter has 12 moons, Saturn nine, Uranus five, and Neptune and Mars have two each. The Earth has one natural Moon, **not to mention** the artificial ones.

6. The use of stratosphere rockets, **not to mention** artificial Earth satellites, presents a most promising method for the study of the upper layers of the atmosphere.

6. **Переведите предложения, обращая внимание на перевод выделенных словосочетаний типа «другими словами», «иначе говоря» (§ 80).**

1. With present rockets and fuels it appears that it needs about a ton of take-off mass to enable a pound of matter to escape from the Earth's gravitational field — **to give it, in other words**, the escape velocity of 25,000 miles per hour.

2. When an object is heated, the average speed of its molecules is increased, their average kinetic energy becomes greater or, **to put it in another way**, the object is said to be at a higher temperature.

3. **In plain words**, electrons are electricity, and for this reason the electron is often considered as the unit of electrical charge.

4. The unit of specific impulse is lb/lb/sec or, **more simply**, seconds.

5. The major part of the energy of an ordinary electric lamp is emitted in the infra-red region, or **in other words**, as heat.

6. When we drop a stone into water it does not move outward from the central point, but it rises and then falls again. **To be more exact** the particles of water are vibrating relative to their former position in the vertical plane.

7. The Curies were able to calculate that within the space of 1600 years half of any given quantity of radium disappears, **to be more accurate**, half of its matter turns into radiation.

7. **Переведите предложения, обращая внимание на обороты, выражающие общепризнанность сообщаемой информации («общизвестно», «признано, что») (§ 81).**

1. **It is common knowledge** that energy reaches the Earth from the Sun by radiation.

¹ hazard — опасность

2. It is common knowledge that the information about the meteoric phenomena are obtained largely by visual and photographic observations.

3. It has long been an accepted fact that waves are formed about any disturbance in a supersonic stream of air.

4. It has long been an accepted fact that the problem of static electricity is particularly serious with airplanes.

5. It has been generally established that the monoplane has many advantages over the biplane especially from an aerodynamic efficiency point of view.

6. It has been established that as one moves from the magnetic equator towards the poles, the intensity of the incoming cosmic radiation increases.

7. It has been recognized to an increasing degree that in nature many forces take place quite suddenly; that is to say, the forces acting are rapidly changing in magnitude and direction.

8. Переведите следующие слова и словосочетания, служащие для выражения отношения автора к высказанной мысли и для ее уточнения:

of course, to say the truth, by no means, in effect, perhaps, to be sure, possibly, needless to say, in all probability, at any rate, curiously enough, no doubt, happily, true, say, apparently, strange enough, basically, unfortunately, at best, more or less, surprisingly, in a sense, so to speak, in other words, presumably, suppose, fortunately, particularly, at most, generally speaking, not to mention, to put it in another way, so to say, in plain words, as a rule, to a certain extent, to say nothing of, to be more exact, indeed, more simply, as a matter of fact, beyond doubt, to be more precise, just, largely, merely, essentially, strictly speaking, in a broad sense, to be specific

9. Переведите предложения, содержащие конструкцию, в которой одно существительное управляет двумя различными предлогами, связанными союзом.

Помните, что при переводе этой конструкции приходится, как правило, повторять существительное дважды.

Образец:

An antenna radiates most efficiently at or near its fundamental wave.

Антенна излучает наиболее эффективно на основной волне или вблизи основной волны (нее).

1. At the beginning of the 20th century people did not think of flying at or above the speed of sound.

2. This tube was designed for and will find its widest application in colour TV receivers.

3. The vast majority of transformers receive power from and deliver power to circuits with approximately constant potentials.

4. By using magnetometers and telemetering it is possible to study electrical currents flowing in and beyond the ionosphere.

5. In addition to the stars there are the nebulae, rarefied clouds of luminous gas, which are found only in or near the Milky Way.

6. Should a coloured light be desired from filament lamps it can only be obtained by transmitting the original light through, or reflecting it from, a material which absorbs the colours which are not required.

7. There are few occasions, except in laboratory work, when short-wave ultra-violet is permitted to travel through or beyond the lamp bulb.

8. One can think of investigations in the neighbourhood of, and even on, the planets Venus or Mars, which are similar to those described above for the moon.

9. An understanding of these interaction processes is of vital importance to anyone who wishes to work with or use any form of nuclear radiation.

10. What do we mean by a wave motion? Stated simply, it is a form of disturbance with certain fixed properties which travels through or in a substance.

11. The photo-electric cell is an essential unit in sound film reproduction, but for the moment we will examine its application to the transmission of pictures with and without wires.

12. Television is defined as a system whereby the image of a scene can be translated to, and reproduced in, another place.

10. Переведите предложения, содержащие многозначное служебное слово just и словосочетания с ним:

just 1. «только», «лишь»; 2. «только что»; 3 «точно», «как раз»; just now «только что»; just as ... so «так же как ... так и»; just as (like) «точно так же, как»

1. Hydrogen has just one proton and one electron in each atom.

2. The number of the element in Mendeleyev's table is just equal to the number of protons in its nucleus.

3. Free electrons may be obtained by methods other than the high-temperature emission just discussed.

4. Just as the planets travel round the Sun, so most of the planets have smaller bodies circling round them.

5. Mars is only one-tenth the mass of the Earth, and its diameter is just over one-half that of our planet.

6. Bergerac's machine was simple enough — just a box with a number of rockets attached to it.

7. The big advantage of a liquid propellant rocket is that it is completely controllable. The power, or thrust, can be regulated just like in an ordinary engine.

8. Thermal conductivity and thermoelectric power are determined in the electron theory by methods analogous to those just outlined.

9. Scientists are **just now** starting to explore the chemistry of low temperature.

10. **Just as** an electric field exists in the region around an electric charge, **so** a magnetic field exists in the region around a magnet.

11. We have **just** seen that the simplest way to determine by experiment the density of a substance is to weigh it.

12. Measurement of the temperatures shows **just** what we might expect: that the further we are away from the Sun, the lower the temperature is.

11. **Повторение.** Переведите отрывки текста, обращая внимание на перевод эллиптических конструкций.

1. Of all the planets in the solar system, Venus most nearly resembles¹ the Earth in size, in mass and in density: and so it is on Venus that we have the greatest expectation of finding conditions very much like those that exist on the Earth. The path of Venus lies inside the path of the Earth. When at its nearest to the Earth, Venus is only 26 million miles away. No other body ever comes so near the Earth, with the exception of the Moon and an occasional comet or asteroid. When at its farthest from the Earth, Venus is 160 million miles away. With such a wide range between its greatest and its least distances, it is natural that at some times Venus appears much brighter than at others. When at its brightest, it is easily seen with the unaided eye in daylight.

2. In order that any particle, whether large or small, may be able to escape into outer space it is necessary that its velocity should exceed a certain critical value called the velocity of escape.

If we know the velocity of escape from any planet (which is dependent upon a knowledge of the mass and radius of the planet) and the average velocity of the molecules (which is determined by the molecular weight and the temperature), we can estimate with considerable accuracy whether the planet is likely to have retained its original atmosphere almost in its entirety, or to have lost a portion of its atmosphere or to have lost essentially the whole of its atmosphere.

The inspection of the figures for the velocities of escape for different planets suggests that the large planets may be expected to have much more extensive atmospheres than that of the Earth.

Лексические упражнения

12. Переведите предложения, содержащие сложные прилагательные, в состав которых входит слово **borne** (11,1).

1. **Rocket-borne** ionization chambers are widely used to investigate primary ray intensity.

¹ resemble — быть похожим, напоминать

2. All electronic assemblies of **airborne** radar are cooled during the flight.

3. Once the wheels leave the ground, the airplane is **airborne**.

4. Between 1909 and 1914 a number of **balloon-borne** experimentors learned that the proportion of ions found in the atmosphere increased as they went up away from the Earth.

13. Переведите предложения, обращая внимание на многозначность слова **whereby** (11,12).

1. The cathode oscillograph is an instrument, whereby the wave form of an alternating voltage may be shown on a screen.

2. In an ion rocket the ions are pushed backward, whereby the rocket drives itself forward.

3. There is a process, called radiolysis, whereby nuclear radiation can cause water to decompose into hydrogen and oxygen.

14. Переведите предложения. Различайте глаголы **rise** (rose, risen) «подняться», **raise** (raised, raised) «поднимать» и **arise** (arose, arisen) «возникать» (11,14).

1. An important special case **arises** when two particles do not interact with each other.

2. Some isotopes are stable; the differences between them are those **arising** from difference in mass.

3. The sun **rises** in the East, moves across the sky, and sets in the West, only to repeat this journey the next day.

4. The energy supplied in electrical form to a cathode will continue **to raise** the temperature of the cathode until the rate of heat loss from the cathode balances the rate of heat input.

15. Переведите предложения, содержащие глаголы **to capture** (11,10) и **to trap** (11,17), близкие по своему значению.

1. Many of the neutrons that remain in the atmosphere **are captured** by the nuclei of nitrogen atoms in the atmosphere.

2. In the development of nuclear reactions a new energy source **has been trapped** — the energy stored in the interior of atoms.

3. The prospect of reaching other planets **has captured** the imagination of a great number of people.

16. Переведите предложения, содержащие близкие по значению глаголы **Initiate** (11,18) и **originate**.

Помните, что глагол **Initiate** является переходным («положить начало чему-л.»), а глагол **originate** — непереходным («возникнуть»).

1. The complex nuclear reactions, which **initiate** the transition of the primary cosmic ray beam in the atmosphere, form the main point of interest for the cosmic ray physicist.

2. The program directed toward the development of advanced technology radioisotope thermionic power supplies for space applications **was initiated** in 1966.

3. Many of the most important advances in the field of optics in the last decade or two **have been** directly stimulated by or

originated through progress in electrical engineering and its branches of communication sciences, microwave electronics and radioastronomy.

4. The large variety of new particles which **originate** in the process of forming heavy mesons have been discovered in cosmic ray recordings.

17. Переведите предложения, содержащие глагол **to agree** (11,28), имеющий несколько значений. Назовите слова, которые определили перевод этого слова.

1. All the scientists **agree** that with its low escape velocity, the Moon would be valuable as a starting-off point for interplanetary voyages.

2. In scientific matters usually facts must be based on observations. Scientists may **disagree** about how observations should be interpreted, but about the observations themselves there should be no dispute.

3. The usual method to prove the correctness of a scientific hypothesis is to test whether it **agrees** with observations or not.

18. Переведите предложения, содержащие глагол **to speculate** и существительное **speculation** (11,29).

speculate *v*

1. We are especially interested in the composition of the atmospheres of the planets, since we cannot **speculate** about conditions there without this knowledge.

2. Once it was clear that the nucleus of an atom was made up of particles, Rutherford began to **speculate** on the possibility of knocking out¹ one or more of these particles.

3. Before attempting to **speculate** about the origin of cosmic radiation it was necessary to establish in detail the characteristics of this radiation.

speculation *n*

4. **Speculation** about how the mind works is as old as philosophy itself.

5. The discovery that atoms contain electrons led to the **speculation** that atomic spectra may result from electron motion within atoms.

6. There was considerable **speculation** as to the nature of X-rays.

7. Man has for centuries applied his intellect to **speculations** about celestial objects.

¹ knock out — выбивать

19. Переведите существительные (левая колонка) и соответствующие им прилагательные (правая колонка). Обратите внимание на то, что прилагательные образованы от другого корня:

star	stellar
earth	terrestrial
sun	solar
moon	lunar

20. Переведите предложения, обращая внимание на многозначность предлога *over*:

1. «над» (чем-л.); 2. «через» (с глаголами движения); 2. «свыше» (какой-то величины); 4. «по сравнению» (с чем-л.); 5. «на протяжении; в течение» (какого-то периода времени); «на» (какое-то расстояние)

1. Our control *over* nature is increasing every day.
2. The Chinese made the kite of a light framework of bamboo *over* which there was a cover of strong paper.

3. During the I. G. Y. (International Geophysical Year) scientists from *over* sixty nations studied the surface of the earth on a scale never before possible.

4. Radiation is a high-speed process which may transfer heat energy *over* great distances.

5. Ramjet is an advance *over* a piston engine.

6. One of the main advantages of fission energy *over* chemical energy is the vastly greater content achieved per pound of fuel.

21. Переведите предложения, обращая внимание на особенности перевода глагола *depend* с двумя предложными дополнениями.

1. All electromagnetic devices that do mechanical work **depend for** their operation on the forces that arise in the presence of electric and magnetic fields.

2. Fuel cells and other systems that **depend on** chemical reaction **for** the generation of energy were rejected because of excessive logistics¹ cost.

3. Angular velocity, like linear, **depends for** its value **upon** two variables, namely, the direction of the axis of rotation and the rate of rotation.

22. Повторение. Переведите предложения, обращая внимание на перевод глаголов и глагольных словосочетаний.

A. Глаголы:

to promise, to store, to extend, to avoid, to affect, to ensure, to encounter, to impart, to attribute, to recognize.

1. The first manned space flight is an indication that our medical scientists working in this field have been following a correct road which promises further success.

2. The process whereby the brain stores and uses information is little understood even to-day.

¹ logistics — транспортировка

3. Man's flight into space **extended** immeasurably the horizons of our knowledge.
4. A large percentage of test equipment failures **can be avoided** by careful handling.
5. Having discussed the various factors which **affect** the ultimate sensitivity of thermal detectors we must now discuss photo-detectors.
6. On the spaceship Vostok two-way communication with the Earth **was ensured** by a radio-telephone system working on short waves.
7. A special type of motion that we have not yet examined but that **is encountered** in many familiar situations is vibratory motion.
8. The earth, by virtue of its rotation, **imparts** to the launching vehicle an initial velocity relative to free space.
9. Beta radiation **was originally attributed** to the emissions of beta rays, but subsequent investigations showed that the particles in question were electrons.
10. Fields of force are **recognized** by the tendency of objects in them to move; accordingly, we describe fields in terms of motions.

Б. Глагольные словосочетания:

to take advantage, to be in progress, to be in a position, to be referred to as, care is taken, reference is made, mention is made, use is made

11. We must study radio-astronomy in the microwave range in order **to take best advantage** of the low sky temperatures generally found at these frequencies.
12. Research work is constantly **in progress** to find materials with magnetic properties better than those in use, to improve the technique of the utilization of materials in current demand, and to explore the deeper secrets of magnetism.
13. Having introduced the forces acting on the rocket we **are now in a position** to write down the equations of motion.
14. Sometimes the walls of a rocket combustion chamber are cooled by the propellant which is later burned. This technique is **referred to as** "regenerative cooling."
15. Extreme **care should be taken** in making connections between instruments on the instrument pannel.
16. Protons can only be separated from an atom under **very abnormal conditions** to which **reference will be made** later.
17. **Mention has already been made** of disturbances in radio-communication due to variations in the ionization of the D-layer.
18. In the Geiger-counter method, **use is made** of the fact that the alpha particle produces intense ionization along its path while passing through a gas.

В. Словосочетания глагол + прилагательное:

to be responsible, to be familiar, to be aware, to hold true, to make sure

19. In the case of an atom Bohr assumed that only the outermost electron is responsible for the emission of visible light.

20. Ordinary magnets are familiar to everybody.

21. Each person really carries about 60,000 pounds of atmospheric weight. Physically we are not aware of this pressure.

22. The assumption of Bohr's theory that we can determine precisely the location and speed of individual particles at all times holds true for microscopic objects, but it does not hold true for minute, submicroscopic particles.

23. Make sure that all fuel lines are shielded in so far as is possible from all sources of heat.

Словообразовательное упражнение

23. Прочтите следующие слова, учитывая, что префикс *inter-* соответствует значениям приставок «между-», «взаимно-», «внутри-», а префиксы *mal-* и *mis-* имеют значение «неправильно», «неверно»:

, *inter'act*, *'interat'omic*, *'inter'change*, *'interco'nect*, *'inter'stellar*, *'mal'function*, *'mala'djustment*, *'misin'form*, *'mis'use*, *'misunder'stand*, *'mis'calculate*

Упражнения в чтении

24. Прочтите следующие слова из основного текста:

register ['redʒɪsteɪ]

spiral ['spaɪərəl]

whereby [weə'baɪ]

turbulent [tə:bju:lənt]

galaxy ['gæləksi]

exponentially [ekspou'nenʃəlɪ]

neighbourhood ['neibəhʊd]

25. Прочтите предложения из текста (содержащие слова от автора), соблюдая указанные паузы.

1. ...particles could be produced or, || to put in another way, accelerated in ...

2. The particles are, | so to say, | “locked” to particular lines of force...

ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

1. SOLAR RADIATION

(Для перевода без словаря)

It is common knowledge that all motions in the Earth's atmosphere, all weather, and life itself owe their origin to energy received from the Sun. This energy is transmitted to the Earth in the form of electromagnetic waves. Electromagnetic radiation occurs over a wide spectrum of wavelengths. At one end of a complete spectrum are the extremely short waves, including the cosmic rays, gamma rays, and X-rays. Next come the ultra-violet rays, visible light, and infra-red rays. Finally at the other end of the spectrum are the very long waves used in radar, television and radio broad-

casting. Solar radiation is spread over but a part of this spectrum; it includes only visible light and parts of the ultra-violet and infra-red bands.

The quantity of solar radiation received at the outer layers of the Earth's atmosphere on a unit of surface in a unit of time is called the solar constant. Its value has been calculated to be 1.97 cal/cm²/min. Not until this radiation is absorbed is heat liberated¹. As stated above, a fraction² of the incoming solar radiation, about 50%, is absorbed by the ozone layer.

The next barrier is the cloud layers, which can be considered to provide an average cover of about half the sky. The reflecting ability of the clouds is about 0.80, so that 40% of the total radiation is reflected back to space without releasing its heat.

Included in these figures is the small amount of radiation reflected either back to space or down to Earth by the process known as scattering³, light waves being scattered, or reflected in all directions, when striking very small particles.

It is a safe assumption that since the Earth is not growing progressively hotter, all the absorbed radiation must necessarily be radiated back to space. The wavelength of radiant energy varies inversely⁴ with the temperature of the emitting body. The Earth, a relatively cool body, radiates entirely in the long-wave infra-red band. The atmosphere is not nearly so transparent⁵ to these long waves as it was to the short-wave solar radiation. Water vapour, clouds, and to a smaller degree, carbon dioxide, are all good absorbers of rays in the infra-red spectrum. Thus the energy is, so to speak, trapped and the lower layers of the atmosphere are warmed.

¹ liberate — выделять, высвобождать

² fraction — часть, доля

³ scatter — рассеиваться

⁴ inversely — обратно пропорционально

⁵ be transparent — быть прозрачным для ..., пропускать

2. VELOCITIES NEAR THAT OF LIGHT

(Для перевода со словарем)

As the velocity of a space vehicle nears that of light (not likely to be achieved in the immediate future), the effects of relativity theory enter into situation of particular interest, the so-called "time dilatation" effect predicted by this theory — and supported by experimental evidence in the physics of high-speed particles.

Briefly, the predicted effect is as follows: consider two men, A and B, of identical age, say 20 years old. A will remain at home on the Earth, and B will undertake a voyage in space at a speed very near that of light and eventually return to Earth. The total

duration of the voyage will be different, as measured by the two men, the exact amount of the difference depending upon how close **B**'s vehicle approached the speed of light. As an example, suppose **B** took a round trip to a near star at a speed very near that of light (about 186,000 miles per second). It would appear to **A** that the trip took, say, 45 years — he would be 65 years old when his friend returned. To **B**, however, the trip might appear to take about 10 years, including a year or so for acceleration to light speed and deceleration for the return landing — he would be 30 when he returned.

Different values of vehicle speed will lead to widely different time disparities. By approaching ever closer to the speed of light, **B** could take more extended trips that would last millions of years in earth time, but still appear to him to take only a few years. Achievement of near-light velocities would require great amounts of propulsion energy — not less than complete conversion of matter into usable energy.

3. RELIABILITY OF MISSILES AND SPACE VEHICLES

(Для перевода со словарем)

Reliability is above all a design parameter; it must be thought of as a physical property of a device which behaves in accordance with certain physical laws. In other words, reliability starts with engineering and is a basic property which must be designed into the equipment by engineers. It is true that there are other major factors which influence the performance in the final application, such as manufacturing, quality control, and handling and checkout in the field. If manufacturing process is not carried out with the proper precision and skill, if the inspection and testing in the factory are not done with proper care, and if the field crews at the launch site do not checkout, test, and launch the vehicle in accordance with proper procedures, the net result will certainly be mission failures. To be sure, no amount of manufacturing precision, care in the inspection and testing, and proficiency of the launch crews can make a missile or space mission succeed if the basic design is not right in the first place.

Although reliability is one of the primary parameters in determining the capability of the missile or space system to perform its overall mission, it must nevertheless be kept in balance with other systems parameters. Therefore, as part of the systems design, a trade-off¹ between reliability and other systems parameters such as weight, accuracy, speed, and orbital precision must be made. Considerable gain in over-all system effectiveness can sometimes be obtained by sacrificing some accuracy or performance of the system for the sake of an improvement in reliability. Conversely, gains may also be realized by sacrificing some reliability in favour of improvements in accuracy and reduction of weight. The

important point here is that a balance must be struck between reliability and other systems parameters.

To illustrate the severity of the reliability problem in satellites and space vehicles Table presents some relative reliability requirements for a typical subsystem, say, a 25-watt UHF (ultra-high frequency) transmitter which might be used in any one of three applications.

Typical Reliability Requirements for Electronic Subsystem,
25-watt UHF Transmitter

Application	Mission Time	Reliability, Probability of No Failure during Mission	Mean Time to Failure (MTTF)
Aircraft	8 hr, without maintenance	0.92	100 hr
Missile	1.75 hr	0.99	175 hr
Satellite A	1 month	0.96	25 months (18,000 hr)
Satellite B	1 yr	0.96	25 yr (216,000 hr)

Although the mean time to failure (MTTF) for the transmitter in a missile application is only slightly higher than the MTTF required in an aircraft application, the MTTF requirements for space are several orders of magnitude greater than those for either missile or aircraft.

Hence, the resulting reliability problem is different in nature and much more severe in the case of space vehicles.

¹ trade-off — компромисс

4. NOBLE GAS ION LASERS

(Для перевода со словарем)

Experimental observation of laser action involving the excited states of noble gas ions was first reported in 1964.

Since that time, a voluminous literature reporting on the operational characteristics, spectroscopy, and probable excitation mechanisms for these gaseous ion lasers has appeared from many different parts of the world. These intensive research efforts have

also been accompanied by rapid commercial development of practical noble gas ion lasers capable of operating continuously at the output power level of several watts from a single mode over a long period of time.

In comparison with gaseous atom lasers (e.g. the helium-neon laser, which operates in the red and near-infra-red region), and the continuous duty gaseous molecule lasers (e.g. the N_2-CO_2 laser which operates in the infra-red), the noble gas ion lasers generally offer the advantage of shorter wavelength operation, ranging from the blue-green part of the visible spectrum up to the near ultraviolet (where photodetectors are generally more sensitive, which is an important consideration in many scientific research and communication application).

While not nearly as powerful, nor as thermally efficient as the continuous duty molecular lasers, the noble gas ion lasers are at least as efficient as, and much more powerful than (by factors of the order of 10^3), the gaseous atom lasers. Even though the pulsed molecular nitrogen laser does operate in the near ultra-violet at very high peak power, the noble gas ion lasers are more flexible, in the sense that they offer a wide selection of wave lengths in the visible and the near ultra-violet regions, and that they can be operated in both the continuous and the pulsed modes.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какими знаками препинания обычно выделяются слова и словосочетания, идущие от автора?

2. Как переводятся следующие словосочетания, характеризующие отношение автора к тому, что он сообщает:

to be sure, in effect, needless to say, to say the truth, presumably, say, strange to say, strictly speaking, at any rate, curiously enough, at most, in a sense, not to mention, to put it in another way, to say nothing of, so to speak, in plain words.

3. Переведите следующие обороты:

it is true; there is every indication; it is a safe assumption; it is hardly surprising; it is most unfortunate; it is common knowledge; it has been an accepted fact.

4. Укажите способ перевода конструкции, в которой к одному существительному относятся два различных предлога (§ 105):

to receive power from and to deliver power to circuits.

5. Укажите значения слова *just* (упр. 10).

6. Какое значение имеют префиксы *mal-* и *mis-*? Каким приставкам соответствует префикс *inter-* (упр. 23)?

УРОК ДВЕНАДЦАТЫЙ

Текст: The Progress of Contemporary Physics.

Грамматические основы перевода

Перевод конструкций «have + существительное + инфинитив» (§ 109),
«have + существительное + причастие II» (§ 108).

Лексические основы перевода

Перевод слов: **set** (с послелогами), **valid**, **escape**, **superior**, **inferior**,
number, **numerable**, **numerous**, **numerical**, **effort**, **endeavour**.

Перевод предлога **against**.

Перевод многозначного служебного слова **ever** (упр. 3).

Перевод глаголов с префиксом **out-** (упр. 13).

Перевод терминов, в состав которых входят прилагательные **high** и
long (упр. 14).

ТЕКСТ

THE PROGRESS OF CONTEMPORARY PHYSICS

The progress of contemporary¹ physics is a very wide subject, for progress was made in so many different directions, and at so swift² a rate, that it would require many books to set them out³ in detail. But though difficult, the subject is still worth discussing.

Like all the natural sciences, physics advances by two distinct roads⁴. On the one hand, it operates empirically, and thus is enabled to discover and analyse a growing number of phenomena — in this instant, of physical facts. Observations of the world around us whether haphazard⁵ or controlled, lead to the accumulation of experimental facts. On the other hand, physics also operates by theory, which allows it to have the known facts collected and assembled in one consistent⁶ system. New ideas are gradually introduced as hypothesis to be tested by experiment. Some of them approved⁷ by the experimental results are incorporated⁸ in, and lead to, alternations of the theory. Once a new theory has been shown to be consistent with known facts, or, in other words, to be valid⁹, it is used to

predict the results of the experiments not yet performed. The introduction of a new theory is always followed by a period of extended testing and, as usually happens, limitations are found at some point. Thus, thermodynamics reached a barrier when applied to the study of wavelength distribution of radiant energy from hot bodies. Only by an assumption of energy quanta was a satisfactory **escape**¹⁰ shown. This new theory soon established a domain of its own where it demonstrated its **superiority**¹¹ over thermodynamics as in explaining the photoelectric effect, specific heats of solids and gases and many other phenomena. Thus, the **joint**¹² efforts of experiment and theory, at any given time, provide the body of knowledge which is the **sum**¹³ total of the physics of the day.

The great task and the **splendid**¹⁴ achievement of nineteenth century physics consisted in increasing the exactness and range — in every direction — of our knowledge of the phenomena taking place on the human scale. Not only did it continue to develop mechanics, acoustics and optics — the leading branches of classical science — but it also created on every side new sciences possessing **Innumerable**¹⁵ aspects, such as thermodynamics and the science of electricity. In this way nineteenth century physics succeeded in achieving the complete **domination**¹⁶ of the phenomena we observe around us. No doubt research into these phenomena can still lead to the knowledge of many further facts and to new applications; yet it appears that in this **sphere**¹⁷ the essential work has been completed.

From the beginning of the twentieth century the attention of pioneers of physics has been turning increasingly toward more subtle phenomena — molecular, atomic and intra-atomic. The more deeply they descended into the minute structures of matter, the more clearly they saw that the earlier concepts — especially of time and space — failed them in an **endeavour**¹⁸ to describe the new worlds which they were entering. Certain fundamental difficulties affecting the whole basis of physical science were revealed. It became apparent that it was necessary to introduce completely **novel**¹⁹ concepts which had been entirely unknown to classical physics. These new concepts are the atomic theory, the theory of relativity and the quantum theory — three questions which dominate modern physics and influence every branch.

The discovery of the double nature of electrons, as at once a particle and a wave, was followed by a change in the quantum theory, so that this was given a new form called wave mechanics. Wave mechanics has brought about a better understanding and prediction of those phenomena which depend upon the existence of quantized stationary states of atoms. The new theory contributed to every branch of science, including chemistry, because this has brought with it an entirely novel and interesting manner of interpreting²⁰ chemical combinations.

However, the great book of science is never finished: other surprises **await**²¹ us — who knows what mysteries are **hidden**²² within the nucleus of an atom, which although a million million times smaller than the smallest living thing is yet a universe in itself.

УПРАЖНЕНИЯ

Грамматические упражнения

1. Переведите предложения, содержащие конструкцию «to have + существительное + причастие II».

Заметьте, что при переводе предложений с этой конструкцией существительное-подлежащее обычно ставится в косвенном падеже, существительное, входящее в состав конструкции, становится подлежащим, причастие II — сказуемым, глагол to have отдельным словом не переводится (§ 108).

Образец:

Both cockpits **have** controls **connected** together so that...

В обеих кабинах (самолета) органы управления соединены между собой так, чтобы...

1. Machines of many types **have** their operations **controlled** by a computer.

2. A colliding molecule **may have** an atom or two knocked out of it.

3. The theory of atomic structure developed by Bohr **has** the electrons **distributed** around the nucleus in shells (orbits).

4. The larger air-cooled engines **have** the cylinders arranged radially.

5. An atom which **has** one or more of its electrons **raised** to a higher than normal energy level is said to be in an excited¹ state.

6. Current transformers are step-up transformers **having** their primaries **connected** in series with one line and their secondaries **connected** to the ammeter terminals.

2. Переведите предложения, содержащие конструкцию «to have + существительное + инфинитив».

Помните, что глагол to have в этой конструкции имеет значение побуждения к действию и переводится словами «заставить», «сделать так, чтобы». Заметьте, что глагол to have может употребляться не только в форме инфинитива, но и в форме герундия или причастия (§ 109).

Образец:

It is possible to **have** the particles **move**...

Можно **заставить** частицы **двигаться**...

1. It is necessary to **have** the personnel **be aware** of the dangers involved in operating such a device.

¹ excite — возбуждать

2. Slow neutrons can be detected by having them interact with an isotope of boron.

3. The advantage gained by having specialized groups concentrate on various tasks is obvious.

4. The main advantage of the autotransformation is the saving of copper obtained by having part of the winding serve as both primary and secondary.

5. In the early days of aviation, engines were small and could be started by having someone turn the propeller by hand.

6. Because of the many types of turbine engines, it is not possible to list all the major components and have the list apply to all engines.

3. Переведите предложения, обращая внимание на значения слова ever и его сочетаний.

1. The earliest electrical experiment ever recorded is probably that of the Greek philosopher Thales (624—546 B. C.¹).

2. Neutrons are ever present in all materials.

3. The science of chemistry is a vital and ever-changing science.

4. The ever-present force of gravity supplies the invisible force necessary for the forward motion of the plane.

5. Ever since Galileo invented his telescope men had been studying the motions of the planets with ever increasing interest and accuracy.

6. Ever since it was observed that biological organisms perform certain functions much more efficiently than machines, in a very much smaller space scientists have been interested in the laws of similitude².

4. Повторение. Переведите предложения, обращая внимание на перевод инверсии, эллиптических конструкций и на различные значения глагола to have.

А Инверсия (§ 93—97)

1. The defining property of gases is their ability to expand indefinitely. Coupled with this is their extreme compressibility with even a small increase in pressure.

2. In one of the biggest particle accelerators a magnetic field is produced between the horizontal circular poles of a very large electromagnet. Placed between these poles is an evacuated chamber containing a hollow copper electrode.

3. Air-current speeds increase roughly 2.7 m/sec per kilometre of altitude. At 75 km. height the average velocity of stratospheric wind is 10 m/sec, while at about 100 km. it is already 60 m/sec. Noted also are considerable fluctuations in the direction and

¹ B.C. — до нашей эры

² similitude — сходство, подобие

intensity of the wind, which is an indication of complex and irregular air currents at high altitudes.

4. Only in the case of the very largest asteroids has it been possible to measure their diameters.

5. Not only is the entire solar system isolated in space, but each of its principal members is separated from the others by distances that seem very large by everyday standards.

6. During World War II intensive work was done on silicon and germanium rectifiers for use in microwave and radar applications. Not until 1948, however, was the transistor discovered.

7. Without the luminescence the early discovery of X-rays would not have taken place, nor would there be, at the present time, certain methods of X-ray photography.

Б. ЭЛЛИПТИЧЕСКИЕ КОНСТРУКЦИИ § 100—104)

We have seen that there is little expectation, if any, of the existence of any atmosphere on Mercury. Though, at the present time, Mercury could hold an atmosphere composed of the heavier gases, the atmosphere must have escaped entirely if Mercury has remained very hot for any length of time after its formation. We have already concluded that the Earth, where conditions are much less favourable for the escape of an atmosphere, must have lost most of its original atmosphere whilst it was still hot. It is just possible that, though Mercury lost all its original atmosphere, gases were given off by the crust as it solidified and, if so, Mercury may possibly now have an extremely thin atmosphere of carbon dioxide.

It is not easy to find out anything very definite about conditions on Mercury by direct observations. Only telescope makes it possible for Mercury to be seen in broad daylight. Exceptionally steady atmospheric conditions are required for the study of the surface of Mercury.

Difficult as it is to observe the surface markings of Mercury, it is far more difficult to obtain any certain evidence of an atmosphere. Observations of the changes of phase suggest that there can be little, if any, atmosphere, and that the light is reflected from a rough surface, like that of the Moon.

В. РАЗЛИЧНЫЕ ЗНАЧЕНИЯ ГЛАГОЛА TO HAVE

1. From what has been said so far, one might think that alternating current has little advantage over a direct current.

2. A solid propellant is often used for the final stage when the direction of final thrust has to be maintained accurately without further guidance and control.

3. These systems have similar tactical duties to perform.

4. The methods for making such predictions have long been known; in many areas methods of working out the correct answer or the optimum course of action exist.

5. We have already described interference phenomena in connection with the waves on the surface of a liquid, and the same reasoning can be applied to the interaction of two light waves.

6. A small amount ($\sim 20\%$) of excess power is provided to allow for failures and still have the reactor produce the desired power.

Лексические упражнения

5. Переведите предложения, содержащие глаголы **to set, to set up, to set out, to set forth, to set forward** и словосочетания **to set in motion** (12,3).

1. The directional gyro **can be set** to give any desired compass reading.

2. When a current flows through a conductor it **sets up** a magnetic field.

3. The different applications of radar are so numerous that it is impossible to **set them out** in detail in such a short article.

4. Considerations of VTOL (Vertical Take-Off and Landing) aircraft **have been set forth** in an article published recently.

5. When new scientific theories **are set forward** they usually begin with relating new observations to familiar concepts based upon older observations.

6. A force is needed to **set a mass in motion**.

6. Переведите предложения, обращая внимание на перевод прилагательного **valid** и существительного **validity** (12,9).

1. We shall assume that the equations **are valid** in regard to static or slowly varying fields.

2. A review of digital computers and their applications must include considerations of the **validity** of the answers obtained. To be sure that the results **are valid** is of importance to the designer, builder and user.

3. The discovery of the planet Neptune in 1846 furnished the final tests of the **validity** of Newton's gravitational hypothesis.

7. Переведите предложения, содержащие глагол **to escape** (12,10). Укажите, от чего зависит выбор перевода этого глагола.

1. An electron **escapes** from a conductor with greater ease if its speed is increased.

2. During the process of charging and discharging hydrogen is formed, which must be allowed to **escape**.

3. The four satellites of Jupiter that Galileo discovered are visible in a small telescope. The remaining eight are very small; one of them **escaped** detection until recent years.

8. Переведите предложения, обращая внимание на перевод выделенных слов-антонимов.

superior (12,11), inferior

1. Nuclear energy is far **superior** to the energy of chemical propellants.

2. Saturn is the second of the giant planets of our solar system; in size and mass it is **inferior** only to Jupiter.

3. In general, the liquid propellants in common use yield specific impulses **superior** to those of available solid propellants.

4. Nickel and cobalt are far **inferior** to iron as magnetic elements.

5. The liquid propellant engine sometimes is a **superior** power plant for larger missiles.

9. Переведите предложения, содержащие слова одного корня.

number *n*, numerable *a*, innumerable *a*, numerous *a*, numerical *a* (12,15)

1. Enormous **numbers** of neutrons are available inside a reactor.

2. The quantity of stars of the first magnitude is quite **numerable**.

3. There are over a hundred elements which combine in different ways to produce the **innumerable** different substances.

4. The factors affecting the choice of propellants for a particular application are **numerous**.

5. Because of its **numerical** nature, the digital computer is well suited to problems involving the processing of large masses of data.

10. Переведите предложения, обращая внимание на то, что существительные **effort** и **endeavour** (12 18) имеют близкие значения.

1. It is interesting to note that many studies are being directed to the complicated chemistry of high temperature air. These **efforts** have yielded many interesting results.

2. All the **endeavours** of the scientists to find ways of eliminating errors in measuring the quantity of radiation reaching the screen have failed.

3. A variety of methods employing kinetic theory treatments have been developed in an **effort** to calculate the aerodynamic characteristics for a body flying in near free molecular conditions.

11. Переведите предложения, обращая внимание на многозначность предлога **against**:

1. «против» (чего-л.); 2. «по отношению» (к чему-л.); 3. «на фоне» (чего-л.)

1. The air-to-air missile is one which is launched from one airplane **against** another flying aircraft or air target.

2. Consider now the case where a rocket-propelled missile is propelled in a frictionless medium without doing any work against gravity.

3. Work is the result of a force which acts against opposition to produce movement.

4. Air pressure is the combined force of the molecules of air pressing against an object.

5. We have already learned how a heavier-than-air machine is partially supported by the upward component of the air against which the airplane is driven.

6. The pilot must be seated so that he has full outside vision and thus will be able to check the instrument readings against the observed motions of the airplane.

7. The light from the sodium¹ layer is invisible by day against the background of bright sunlight.

8. The motion against the star background of the planets, the Sun and the Moon was the subject of some of the earliest observations and speculations by man.

12. Повторение. Переведите предложения, обращая внимание на перевод следующих слов и словосочетаний.

A. Наречия:

hardly, continuously, nearly, readily, appreciably, conclusively, virtually, materially, eventually, ultimately

1. We **hardly** can say that we fully understand even the most elementary facts about the inner structure of the neutron.

2. Liquid rocket engine designers are **continuously** searching for fuel-oxidant combinations with higher energy content.

3. A galvanometer has **nearly** all the essential parts of a simple electric motor.

4. It appears that better conductors are those whose atoms will fairly **readily** give up electrons from its outer orbit.

5. Alpha particle would penetrate the atom but it is not **appreciably** affected by electrical forces of repulsion.

6. Within recent years research has demonstrated **conclusively** the existence of close relationship between the atom and the unit electric charge.

7. In **contrast** with gases, liquids are **virtually** incompressible.

8. The above-mentioned construction **materially** simplifies the calculation procedure and is expected to introduce only slight amounts of error into the computations.

9. Uranium, by loss of alpha particles and beta particles or electrons, gradually turned into substances of smaller atomic weight, **eventually** becoming radium.

¹ sodium — натрий

10. The Earth's magnetic field which stores and traps the particles comprising the radiation belt¹, decreases in strength with decreasing distance from the Earth and ultimately becomes too weak to store a significant amount of radiation.

Б. Словосочетания, выполняющие роль предлогов:

irrespective of, along with, aside from, except for, instead of, in addition to, on account of, in view of, owing to, at the expense of, because of, in comparison with, in contrast with, prior to, with respect to

11. **Irrespective of** frequency, the speed of radio waves through the atmosphere remains constant.

12. The high frequencies and short wavelengths of the X-ray lines **along with** the high voltages needed to produce them suggests that an atom undergoes large energy changes when releasing X-rays.

13. **Aside from** the Sun, the presently known solar system consists of 9 planets, more than 1500 catalogued asteroids, 31 satellites, and an unknown but very large number of comets and meteors.

14. **Except for** the lightest elements, the nucleus is a complicated system.

15. **Instead of** using protons and alpha particles, scientists began to direct beams of neutrons against target nuclei.

16. **In addition to** the planets and their moons, there is a group of solid bodies known as asteroids.

17. **On account of** the rapidly increasing temperature towards the interior, the degree of ionization of the solar atoms also increases toward the solar centre.

18. **In view of** the change in fundamental concepts of length and time, it is to be expected that the concept of relative velocity should also change.

19. **Owing to** the fact that they need not carry their own oxidizer, jet engines are finding some application in guided missiles.

20. The increased thrust of an engine must be provided **at the expense of** as little additional weight or drag as possible.

21. **Because of** its greater speed, the ramjet will probably replace the turbojet in future designs.

22. Gases, unless highly compressed, are characterized by extreme lightness **in comparison with** liquids and solids.

23. **In contrast with** gases, liquids are virtually incompressible.

24. **Prior to** removal of the rocket catapult on the ground through the cockpit floor opening, make sure that the catapult safety pin² is properly installed on the rocket catapult.

¹ radiation belt — радиационный пояс

² safety pin — предохранительная чека

25. The three types of hydrogen atoms (isotopes) were found to have exactly the same characteristics, the only difference between them being with respect to mass.

В. Словосочетания со словами as и so:

as long as, as far as, as soon as, as to, as if, as well as, as well as a whole, as for, so that, so far, so on, so far as (smith.) is concerned

26. Once converted into a liquid, oxygen will remain in its liquid state as long as the temperature is maintained at or below -297°F .

27. The importance of reducing the weight and bulk¹ of aircraft equipment as far as possible is generally appreciated.

28. As soon as the piston meets the liquid, the liquid pressure can be raised to the required value.

29. Much uncertainty exists as to the precise physical properties of meteoroids.

30. In effect, each particle of iron (or any other material that can be magnetized) behaves as if it had a north pole and a south pole.

31. When electric charges are in motion, they are surrounded by magnetic fields as well as by electric fields.

32. For most metals ultra-violet light is necessary for electron emission to occur, but very active metals, such as potassium and cesium, respond to visible light as well.

33. The atom as a whole is electrically neutral.

34. In liquids a rise in temperature means an increase in average speed of translational motion; in solids a rise in temperature means an increase in vibrational motion. As for gases, we further assume that liquid and solid particles can take up energy in other ways, so that absorption of 1 cal. of heat by 1 g. of different materials may produce different increases in temperature.

35. So far we have treated the Earth as spherically symmetrical, but this is not the case.

36. If an object can reflect red light but absorbs other colors, it will appear red in sunlight; if it reflects chiefly green light, it will appear green in sunlight, and so on.

37. So far as space-flight is concerned, we have already seen that there is no alternative at present to some form of rocket motor.

Словообразовательное упражнение

13. Переведите следующие глаголы с префиксом out-, который придает глаголу значение «превзойти» (кого-л., в чем-л.):
outperform, outweigh, outnumber, outgrow, outmaneuver

¹ bulk — объем

Упражнение на перевод терминов

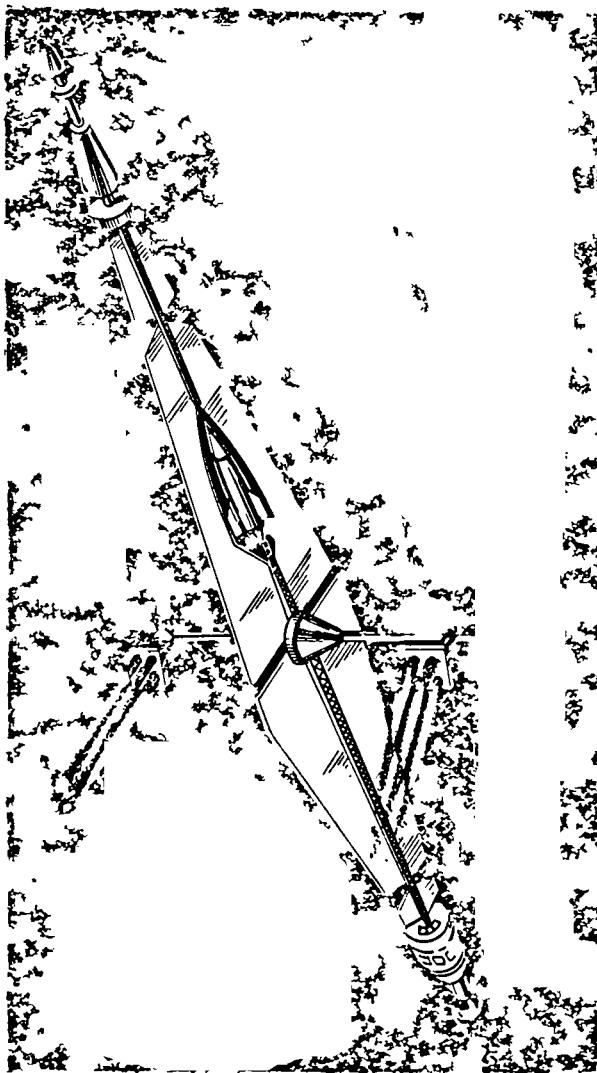
14. Переведите сложные термины, в состав которых входят прилагательные *high* и *long*.

Английский термин	Область применения
high-lift wing profile	авиация
high-energy rocket propellant	ракетная техника
high-performance rocket engine	то же
high-speed aerodynamic tunnel	аэродинамика
high-pressure propellant tank	двигатели
long-range transport aviation	авиация
long-range guided ballistic rocket	ракетная техника
long-playing magnetic tape	радиоэлектроника
long-distance navigation aid	навигация

Упражнение в чтении

15. Прочтайте следующие слова из основного текста:

haphazard [hæp'haɛzəd]	endeavour [in'deவə]
superiority [sju:piər'i'triti]	contribute [kən'tribju:t]
acoustics [ə'ku:stiks]	interpret [in'tə:prit]
innumerable [i'nju:mərəbl]	mysteries ['mɪstərɪz]
subtle ['sʌtl]	


ДОПОЛНИТЕЛЬНЫЕ ТЕКСТЫ ДЛЯ ПЕРЕВОДА

I. EXPERIMENTAL RESULTS WITH A COLLINEAR ELECTRODE PLASMA ACCELERATOR AND A COMPARISON WITH ION ACCELERATORS

(Для перевода без словаря)

Several ways have been suggested for the electromagnetic acceleration of ionized material for propulsive purposes. Two ways which seem most promising at present and are receiving the most attention are ion drive¹ and plasma drive. Because these devices differ in some important aspects and because of the still limited amount of critical experimental data, it is difficult to conclude with certainty which type of device will ultimately prove to be superior. It is not unlikely that each type will be useful for some particular application.

In an ion drive device, positive ions, quite likely produced by surface ionization, are accelerated by static electric fields. Electrons or negative ions must be added to the accelerated positive ion beam to provide overall charge neutrality and maintain proper functioning of the accelerator.

Ion-propelled spaceship on round trip to Mars.

In a plasma drive device, neutral plasma is accelerated by rapidly varying magnetic fields. These fields may result from large currents developed in a plasma discharge by externally applied voltages. The plasma itself can be produced by the action of the discharge.

Ion accelerators are simpler than plasma accelerators, and considerable experience with ion and electron guns exists. Pos-

sibly because of these reasons the ion drive device has received the greater attention. However, ion accelerators designed for terrestrial² purposes are not particularly satisfactory for space application, and considerable effort will be required to develop an ion accelerator suitable for space propulsion. Considerable effort is also required for the development of a suitable plasma accelerator. Nevertheless, plasma drive offers several distinct advantages over ion drive.

Because of the relative complexity of the interaction of magnetic fields and plasmas and the resulting variety of plasma accelerator configurations, experiments are needed to determine the design of suitable plasma drive devices. The Plasma Physics Department of Lockheed's Missiles and Space Division has been engaged³ for a considerable time in experiments involving plasma acceleration, and measurements are being made with several different plasma accelerators.

Description of the Apparatus. Fig. 1 presents a schematic of the collinear electrode plasma accelerator. In essence the device consists of a pair of collinear discharge electrodes connected to a

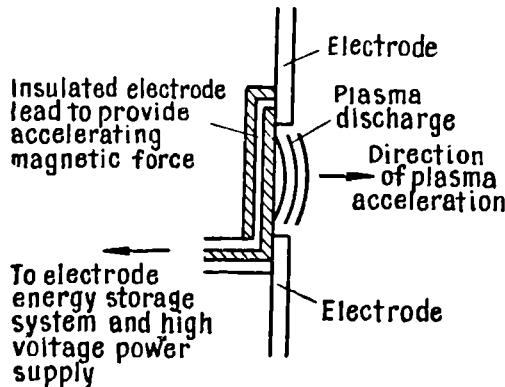


Fig. 1. Schematic diagram of the collinear electrode plasma accelerator.

low inductance, high energy capacitor. The leads between the condenser and the electrodes are arranged to keep the inductance of the discharge circuit as low as possible and also to orient the direction of the discharge forces.

¹ ion drive — ионный двигатель

² terrestrial — наземный

³ be engaged — заниматься (чем-л.)

2. APPLICATION OF DIGITAL COMPUTERS FOR AUTOMATIC TRANSLATION OF LANGUAGES

(Для перевода со словарем)

One of the tasks for which a digital computer can be used is the automatic translation of languages. The idea of translation by computers was first suggested in 1946. The aim of the scheme is not, of course, to produce literary masterpieces, but to give rough-and-ready translations which are more or less correct in meaning and grammar. This is likely to be of tremendous value to scientists, who have a vast amount of foreign scientific literature available but are not able to read a great deal of it. Even very rough translations would be useful here, for they would allow the specialist to skim quickly through the papers and articles in his particular field of study and pick out those of special interest which could then be sent to human translators for more exact renderings.

The general idea, then, is to code the foreign words into numerical form and make the computer operate on these numbers in a certain routine to which the translation process can be reduced. Without going into particulars this routine involves three main operations — comparing the incoming foreign words with entries in a mechanized "dictionary," recognizing particular patterns of words (as in idioms), and transferring information to and from a store.

The size of a store necessary to contain the total vocabulary for a non-technical translation would be extremely large. The number of terms used in specialized branches of science, however, is considerably smaller than required for general literature. Consequently, by limiting the automatic translation to a particular branch of science, the "dictionary" may be reduced to a size manageable by present techniques of storage. Besides reducing the size of vocabulary, concentration on technical literature reduces the problem of ambiguity. And by further specialization on, say, a particular branch of mathematics, ambiguity of technical terms within that branch is lessened. For technical translation, then, a mechanized "dictionary" must be compiled in two stages: first, by collecting together the general language of mathematics, that is, the language common to all or most branches of mathematics — and, secondly, by assembling a glossary of all the technical words in the particular branches of mathematics. The translation of a paper on, say, group theory, would thus be preceded by feeding into a computer a "dictionary" of the general language of mathematics and a glossary of group-theory terms.

Automatic translation is, of course, a very specialized application of digital computers, but it is worth more than just a casual

mention because it does illustrate the kind of techniques which are likely to be used more and more for non-numerical "data processing."

3. PLASMA MICROWAVE DEVICES

(Для перевода со словарем)

Promising applications of the properties of plasmas appear in the field of guidance and generation of high Rf energy. Since a column of plasma will support the propagation of various field configurations of electromagnetic waves, a considerable effort is presently being devoted to an understanding of plasma waveguides. The waveguide is the basic component of the microwave system, and its characteristics will determine and limit the other microwave devices which are possible. An electromagnetic wave travelling down a plasma column will have its phase and amplitude altered, depending on the plasma properties and configuration and prototype attenuators, and phase shifters have been built in several laboratories.

Plasma properties can also be used for waveguide switching. In addition, since plasma exhibits interesting properties such as the Faraday effect, polarization characteristics, double refraction and nonlinearity, they can be utilized for circuit and microwave applications.

It has been demonstrated that slow electromagnetic waves can propagate in a plasma cylinder in the presence of a dc magnetic field. As a consequence, intense investigations are being made in attempts to utilize a plasma as the slow-wave structure of travelling wave tubes. In this manner, the characteristics of the slow-wave structure can be altered externally by changing the plasma properties.

Suggestions have been put forth in which the nonlinear effects of a plasma at high power levels are utilized as the nonlinear propagating medium of a paramagnetic amplifier. The generation of millimeter waves by plasma techniques is another field of great interest and current importance.

In a gaseous discharge plasma system, it is possible for a metastable states of a given atom to be used as carriers of energy to excite specific quantum energy levels of another atom. If the excitation cross section for this process is large, then excess of atoms in this excited state will occur. This is precisely the condition required for maser action, and the successful operation of such a quantum plasma device producing maser oscillations at optical frequencies has been achieved recently.

Further schemes have been put forth whereby the ion sheaths surrounding hypersonic re-entry vehicles would be utilized as coherent radioactive elements and hence as a plasma antenna.

4. ENERGY BALANCE AND MATERIAL PROBLEMS

(Для перевода со словарем)

It is obvious that controlled thermonuclear power will not be possible unless the many problems of stable plasma confinement and heating are solved. Therefore, thermonuclear research has so far concentrated, and rightly so, almost exclusively upon these problems.

The subject has occupied our thoughts through the preceding chapters. It will again do so in the chapters following this one, where we shall discuss briefly a number of recent experimental developments and enlarge upon some of the principles behind them. But there is another aspect: even if confinement and heating were achieved, the structure of a practical thermonuclear power generator would still not be clear. Little real thought has gone into energy balance and material problems pertaining to such a hypothetical device. While any such calculations will be highly speculative, some worth-while points can be made. In particular, we shall conclude that a thermonuclear reactor will be large, with somewhat less assurance, we conclude that profitable power production from a fast pulsed system looks extraordinary difficult of achievement.

One thing appears clear — the energy of the thermonuclear neutrons must be recovered as heat. This single fact makes necessary the presence of a heat-recovery blanket surrounding the reactor. In addition, if the reactor operates by D-T fusion (Deuterium — Tritium), the tritium must be regenerated by these neutrons, for no other method seems to be available for producing tritium in the amount required. The blanket then becomes complicated on this account. Further difficulties arise at the vacuum wall that faces the plasma. The heat flux on it may be large, and special efforts may be required to cool it.

The function of the blanket must also be compatible with the establishment of the magnetic induction. If the current-carrying coils were normal conductors, they would have to be protected from the neutron flux in order to prevent structural damage and consequent increased resistivity. If such normal conductors were used, the coil power loss would be a significant and perhaps large fraction of the electrical output of the system.

Vastly more attractive is the use of superconducting coils for generating static or quasi-static magnetic inductions. Very recent advances in superconducting materials have been unbelievably spectacular. The possibility of reducing the coil power to zero will affect the net power behaviour of thermonuclear reactors very favourably.

This application is only one of many which can be envisaged for exploiting loss-free high-magnetic field structures.

5. DOPPLER TECHNIQUES FOR MISS-DISTANCE INDICATING SYSTEMS

(Для перевода со словарем)

The main purpose of Miss-Distance Indicating Systems is to determine the minimum distance between an airborne target and the attacking missile during a particular mission.

There are two reasons for the need of this information. With modern missiles, a direct hit on the target is not always necessary and misses up to certain distances, depending on the target and missile, will still destroy the target. Also during some training and missile evacuation missions it is desirable not to destroy the target, which can be made recoverable. In this case, the attacking

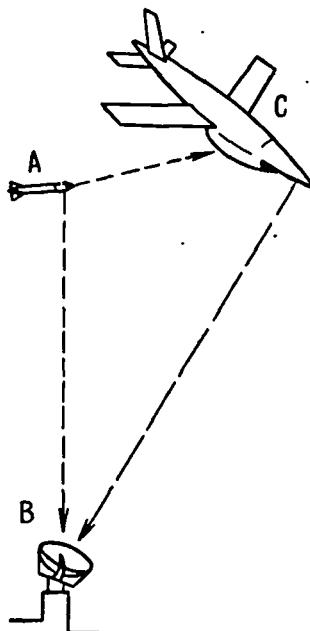


Fig. 1. Diagram of a Doppler miss-distance indicating system.

missile can be programmed to miss the target by a certain distance and the knowledge of the actual miss-distance then becomes necessary.

There are several systems for obtaining this miss-distance information. The most popular systems are:

optical, in which cine cameras, in the target or on the ground, are used to photograph the approaching attacking missile. After analysis of the film, the path of the missile, with respect to the target, can be established;

radioactive, in which a radioactive isotope is placed in the attacking missile and the radiation intensity is monitored with instruments in the target. Knowing the sensitivity of the monitoring equipment, the record of intensity vs. time can be used to determine the miss-distance;

electronic, in which the miss-distance is determined by electronic means. The electronic approach seems to be the most satisfactory for most applications.

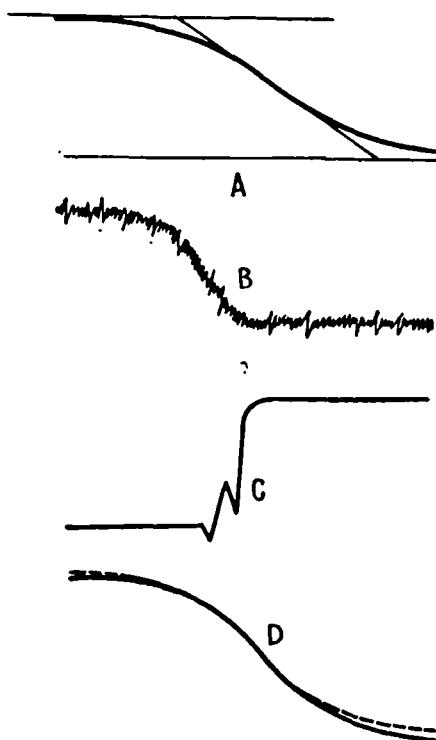


Fig. 2. Typical examples of Doppler frequencies shifts in a miss-distance indication.

The Doppler-type miss-distance indicating system is an electronic system. Basically, this system relies on the apparent frequency shift when the source and the observer are in motion with respect to each other. (Such a typical frequency shift is shown in Fig. 2.) The slope of the curve and the asymptotes give the miss-distance. The distance between the two asymptotes is a function of the relative velocity between the missile and the target. Fig. 1 shows the three major parts of the system with which this type of data can be obtained. The source of the RF signal is usually in the

missile (A). In most cases the telemetry transmitter, used for other purposes, is sufficient. However, for special applications a compact stable signal source is also available. There are two signal paths to the ground receiver (B). One is the direct one. The other path is through a receiver-transmitter combination in the target (C). To differentiate between these two signal paths, the signal through the target is shifted in frequency. The two signals are then compared in the ground station receiver. As long as the system is stationary, the difference frequency between the two paths will be a constant. If the missile and the target are in relative motion to each other, the difference frequency will exhibit the typical Doppler characteristic shown in Fig. 2.

The Doppler system is often chosen, since for the majority of missions it has several advantages.

This system has some problems. The first problem is that of data reduction. While the reduction of ideal data is quite simple, the data actually obtained may be difficult to interpret. Curve B in Fig. 2 shows the effect of noise, the intercept occurring at a distance of about 80 miles from the ground station. Curve C shows the effect of pulse reversal in the missile antenna lobes. This causes a discontinuity in the curve.

There are other more subtle changes in the Doppler curve, which are caused by acceleration of the missile or the target as shown in Curve D.

6. A FIRST LOOK AT RANDOM NOISE

(Для перевода со словарем)

Synopsis: The aim of this paper is to discuss some elementary properties of a type of noise which has been called "Gaussian" or "random". The power spectrum is discussed and its relation to the autocorrelation function is pointed out. Two probability distributions associated with the noise are described.

Occasionally one encounters engineering problems which involve the random fluctuations of an electric current or voltage, or some other quantity. These fluctuations are often called "noise". A considerable amount of information about such fluctuations has been obtained by mathematicians who have studied the subject under the name of "stochastic processes". The aim of this paper is to present an introduction to the subject by mentioning some of the main properties of the fluctuations, which in accordance with engineering usage, will be spoken of as noise.

There is a wide variety of noises, but this paper will be restricted to those called "stationary processes". That is, they go on about the same forever, and their statistical properties do not change with time. Furthermore, the discussion will be concerned mostly with a special kind of noise which has been called "random" or "Gaussian" noise. Its second name comes from the fact that its statistical properties are closely related to the Gaus-

sian distribution used in probability theory. Random noise is a mathematical idealization of certain types of noise occurring in nature. One such type is thermal noise, which occurs as a result of the thermal agitation of electrons in a conductor.

Noise consisting of impulses that can be heard separately is not considered to be random noise in the sense that the term will be used here. For example, noise from relay clicks and ignition noise from automobile engines are not random noises. When such trains of impulses are expressed as Fourier series or as Fourier integrals there is a considerable amount of correlation between the phases of the various components. This is not true for random noise.

Why are engineers interested in the properties of noise? One reason is that noise produces interference in transmission systems. A knowledge of the statistics of the noise is helpful in estimating the quality of a proposed system while it is still in the design stage. In some cases the noise is large in comparison with the signal, as in the problem of detecting airplanes or submarines. The question here is how best to overcome the noise. Again, carrier communication systems are coming into use which employ a wide band of frequencies to transmit a large number of telephone channels. The output of such a system resembles random noise, and this fact may be used in designing the system.

Random noise has been studied more extensively than other types of noise. The probable reason for this is that it is easier to handle mathematically than the other types. Furthermore, some frequently encountered noises, such as thermal noise in conductors and shot-noise in vacuum tubes, are close approximations to random noise.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите способ перевода конструкции "to have the engines installed" (§ 108).

2. Как переводится глагол **to have** в конструкции "to have the body move" (§ 109)?

УПРАЖНЕНИЯ ПО ОТДЕЛЬНЫМ ВОПРОСАМ ПЕРЕВОДА

1. Переведите предложения. Обратите внимание на то, что при переводе предложения, состоящего из подлежащего и сказуемого (без дополнения и обстоятельств), подлежащее часто ставится после сказуемого.

Подлежащее в данном английском предложении является главным для сообщения. В противоположность английскому языку главное для сообщения в русском языке обычно стоит в конце предложения.

Примерная схема предложения: «Делается то-то».

1. Further studies of the solar radiation are needed.
2. When monatomic hydrogen reassociates into the normal molecular form a great deal of energy is released.
3. Within recent years the application of radio techniques in the study of various problems of astronomy has led to remarkable results. A new science, Radio Astronomy, has emerged.
4. Detailed information on different types of particle accelerators — the heavy artillery of the atomic world shooting invisible bullets at invisible targets — is now available.
5. The temperature of the upper atmosphere may be calculated if the local speed of sound is known.
6. Thermoelectric generators with power ratings from a few watts to 50 kilowatts have been developed and generators with ratings of hundreds or thousands of kilowatts are being considered.
2. Переведите предложения. Обратите внимание на то, что при переводе предложения, состоящего из обстоятельства (стоящего на первом месте), подлежащего и сказуемого (без дополнения), подлежащее, как правило, ставится после сказуемого. Укажите, какое это имеет смысловое значение.

Примерная схема предложения: «Тогда-то (там-то) делается то-то».

1. In radio calculations the metric system is used.
2. About 1940 another circular accelerator, the betatron, was developed.
3. In a voltmeter high current sensitivity is desired.
4. To improve fuels light metals such as lithium, boron, and beryllium are being added.

5. To detect the very weak radio signals coming to the Earth from extra-terrestrial sources, a directive antenna and a highly sensitive radio receiver must be used.

6. In this part (of the book) most of the principal techniques involved in the fabrication of semiconductor devices are covered.

7. In sec. 6 the methods of purification and single-crystal preparation of semiconductors are discussed.

8. At the International Bureau of Weights and Measures at Sevres, France, the ultimate standards of length and mass are kept.

9. In several countries particle accelerators serving to split atoms and explore the fundamental nature of matter are being used.

3. Переведите предложения, в которых главным для сообщения является подлежащее (выраженное, как правило, существительным с неопределенным артиклем или без артикля при существительном во множественном числе); после сказуемого стоит группа слов, поясняющая его.

При переводе предложений подлежащее следует поставить после сказуемого (в конце предложения), а обстоятельственные слова, относящиеся к сказуемому, перенести на первое место в предложении.

Примерная схема предложения: «В таких-то случаях важно то-то».

1. Several conclusions may be drawn from the discussion.

2. Much has been written on the problem of reliability of missiles.

3. In recent years, considerable research has been done, and complex, yet highly reliable, fuses are available for a variety of missile applications.

4. A serious problem arises in relation to take-off power requirements of the earth satellite.

5. It is usual to regard the troposphere and stratosphere as the lower atmosphere and the remaining regions as the upper atmosphere. Other classifications are sometimes employed.

6. The investigations of the upper atmosphere are being attempted in many countries. Rapid progress is to be expected during the coming year.

7. One of the leading rocket experts said that a 1,000,000 lb. thrust chamber is feasible from an engineering point of view.

8. An important special case arises, when two particles do not interact with each other.

4. Переведите предложения, в которых главным для сообщения является подлежащее; после сказуемого стоит обстоятельственный инфинитивный оборот (относящийся к сказуемому).

При переводе таких предложений подлежащее обычно должно стоять после сказуемого, а обстоятельственный оборот переносится в начало предложения.

Примерная схема предложения: «Чтобы достичь цели, нужно сделать то-то».

1. Reactors must be cooled to prevent extremely high temperatures at their cores.
2. Piston engines are used to rotate a propeller, thus causing thrust which drives the aircraft through the air.
3. In aircraft defence systems, an additional device is needed to distinguish between friend and enemy so that the aircraft defence will not shoot down friendly aircraft.
4. A great deal of care has to be taken by the aircraft designer to lessen the noise in a passenger air liner.
5. Research work and experimental investigations are constantly in progress to find materials with magnetic properties better than those in use.
6. Care must be exercised to prevent damaging the instruments during the vibration test.
7. Use should be made of the oscilloscope to help localize troubles in the radar set.

5. Переведите предложения, в которых главным для сообщения является подлежащее; после сказуемого стоит группа слов, относящаяся к подлежащему.

Заметьте, что при переводе таких предложений подлежащее будет стоять после сказуемого, а слова, относящиеся к подлежащему, следуют за ним.

Примерная схема предложения: «Был создан прибор, который...»

1. A small atomic battery has been developed which uses radioactive strontium from the ashes of nuclear furnaces.
2. Rocket fuels are used that burn at extremely high temperature resulting in high combustion chamber pressures and very high jet velocities.
3. A device is now in use which automatically opens the parachute at a predetermined altitude.
4. Toward the end of the nineteenth century a number of investigations were made of the discharge of electricity through rarefied gases.
5. Full investigation is being made into the tremendous possibilities of the applications of isotopes.
6. A need exists for airborne electronic equipment of minimum size and weight combined with utmost reliability.
7. For the first time, a radio telescope has been constructed with sufficient directivity for the production of detailed "radio pictures" of the brightness distribution on the solar disc at decimetre wavelengths.
8. An investigation is described of the effect of extraneous radio-frequency interference in frequency-modulated multichannel radio-telephony transmission systems.

6. Переведите предложения. Обратите внимание на то, что если после оборота с местоимением it (A.) или с вводящим there (B.) стоит обстоятельство, то его лучше поставить в начале предложения.

A. 1. It has been known for many years that as one moves from the magnetic equator towards the poles, the intensity of the incoming cosmic radiation increases.

2. It has been mentioned before that the only type of pump that is inherently light enough for rocket applications is the centrifugal.

3. It can be seen from Table 1 that the tank volume and, hence, its weight is greater for a given weight of low density propellant than for the same weight of high density propellant.

4. It is possible by using instruments mounted on rockets to find how ozone and molecular oxygen are distributed through the atmosphere.

5. It has been established by the use of recorders that the Sun is an intense source of X-rays.

6. It is essential in aeronautical study to understand how speed is measured.

 B. 1. There is much less wind at high altitude.

2. There are other questions in addition to the question of weight and drag which determine the speed of the airplane.

3. In recent years there has been a rapidly growing interest among solid-state researchers in the problem of direct conversion of heat to electric energy by thermoelectric means.

7. Переведите предложения, содержащие сложное дополнение «существительное+пассивный инфинитив».

Заметьте, что перевод таких конструкций лучше начинать с инфинитива (в активной форме), а существительное (обозначающее объект действия) поставить после инфинитива.

1. If we want some information to be sent rapidly we send it by radio.

2. Automation in industrial plants permits much-needed manpower to be used elsewhere.

3. Materials are constantly being improved and their introduction will enable weight to be reduced.

4. Spectroscopic studies of the radiation from aurora have enabled determinations to be made of the temperature in the region near the 70-mile level.

5. Solar battery is the ideal generator for an artificial satellite and will permit data to be obtained through the entire life of its electronic equipment.

6. The decrease in the weight of the structure of the aeroplane enables more passengers or more freight to be carried.

8. Переведите предложения. Обратите внимание на то, что при переводе выделенных глаголов и прилагательных приходится добавлять пояснительные слова.

1. Application of the principle of phase stability led to several new machines, the electron synchrotron, the proton synchrotron and the electron cyclotron.

2. The pressure that forces free electrons through the conductors and electrical devices is called electromotive force.

3. About 1940 another circular accelerator, the betatron, was developed by D. W. Kerst at Illinois. This electron accelerator was capable of energies reaching as high as 300 MeV.

4. After the rocket motor has used up its fuel, the missile continues on its trajectory using up the energy imparted to it by the high initial thrust.

5. As has already been seen, temperature tends to decrease with altitude when flying in the troposphere.

9. Переведите предложения. Обратите внимание на то, что при переводе отрицательную формулировку часто приходится заменять положительной и, наоборот, положительную — отрицательной.

Образцы:

1. It will not be out of place here...

Здесь будет уместно... (дословно «Не будет неуместно...»)

2. There is little doubt...

Нет сомнения... (дословно «Мало сомнения...»)

1. It is still far from clear how much of the primary cosmic radiation is subject to solar influence and what is the nature of this influence.

2. There seems to be little doubt that in a suitable mixture of hydrogen isotopes a thermonuclear explosion will take place when it is raised to the required temperature.

3. It is not beyond the bounds of possibility that, by the use of very low temperatures, for example, a stable solution of monoatomic hydrogen may be produced.

4. Even when future space-travellers succeed in landing on the moon, their troubles will be far from over.

5. Glancing through this book you can see numerous strange signs and symbols. Most of the diagrams consist of little else.

6. It is impossible in a discussion such as this to do more than suggest a solution of one or two particular difficulties.

7. The blast effect of the fragmenting type of warhead is not negligible.

8. It will not be out of place here to describe briefly a number of ways of creating shock waves.

9. It is not out of question that the nuclear sources will eventually compete economically with coal as a source of energy.

10. The details of the processes by which meson can produce the magnetic field are far from being completely understood.

11. On October 4, 1957, Russian scientists successfully launched the first Earth Satellite. The news was first given by Moscow Radio just before midnight, and it was not long before radio signals from the orbiting vehicle were picked up in many parts of the world.

12. Nuclei are known to possess many other properties in addition to those mentioned, and under certain circumstances are anything but inert.

10. Переведите предложения. Обратите внимание на то, что причастные обороты, придаточные предложения или приложения, входящие в состав сложного предложения, при переводе в некоторых случаях лучше заменять самостоятельным предложением.

1. The fixed-frequency cyclotron is the oldest of the circular accelerators, having been first built in the early 30's.

2. The term "rocket engine" is becoming more common than the older "rocket motor", which term is now tending to be used only for the solid-propellant variety.

3. The term "high-speed flight" is applied especially to supersonic speeds, in which field many of the problems are as important to rocketry as to aeronautics.

4. It is convenient in practice to use the foot as the unit of length, for which reason the resistances of all conductors are specified and compared with each other on the basis of a wire having a diameter of 1 mm and a length of 1 ft.

5. The lighting system in the aircraft has numerous separate lights, some of which may be fluorescent, a practice that is becoming commoner in air liners with the availability of a high-voltage electric supply.

11. Переведите предложения. Обратите внимание на то, что при переводе выделенной части предложения приходится изменять структуру предложения.

1. In 1899 Rutherford was experimenting on the extent to which radioactive radiations could pass through thin sheets of aluminium.

2. The degree to which a machine possesses inherent stability depends upon such things as size and purpose.

3. For many purposes the Sunspot number is a useful guide to the degree of solar activity, i. e., the extent to which solar conditions are disturbed.

4. The important property of the atmosphere, in so far as the rocket is concerned, is its density and the way in which the density varies with altitude.

5. The uses to which miniature satellite vehicles may be put are varied.

6. The purpose of the injector is to mix and atomize the propellants, the degree to which it performs each of these functions depending very largely on the propellants used.

12. **Переведите предложения. Обратите внимание на то, что при переводе приходится изменять структуру всего предложения.**

1. Men have never created an offensive weapon without someone's devising a corresponding defensive weapon.

2. It is a matter of everyday experience that objects having different masses also have different weights.

3. The problem of describing the motion of bodies, such as particles and rigid bodies, in space is that of kinematics.

4. Of all the problems frictional heating seems to involve the greatest likelihood of hazard, and is at the moment one of the most unknown factors.

5. Our detailed knowledge of atomic structure is quite new, but the concept of the atom is very old.

6. The authors of "High speed flight" tried to make the discussion as non-technical as possible but any attempt to deal adequately with a subject into which science and technology enter so extensively must involve some technicalities.

7. Opinion in late years, influenced partly by the theory of the expanding Universe, has tended towards making the birth of the Sun and solar system more or less synchronous.

8. The airplane has opened backward areas. Many countries once isolated by terrain or by travel time have been brought within visiting range of the rest of the world.

9. Uranium is somewhat like the father of a family tree in which radium is the fifth generation and lead is the last.

10. By the age of sixteen, Tsiolkovsky's store of learning was considerable; but he had now reached a point where reading at home could teach him no more and his father made arrangements for him to go to Moscow.

11. Pilots of high speed aircraft always keep a careful eye on their machmeter.

12. It is already a fact of observation that the mean level of the northern seas is some six inches lower in the northern spring than in the northern autumn, that of the southern seas six inches lower in the southern spring.

13. A typical example of a ramjet installation in a guided missile shows the ramjet engine attached to a strut below the body.

13. Переведите предложения, содержащие образные выражения.

1. The launching of Sputnik I started a virtual avalanche of interest in the field of astronautics.
2. The plum-pudding model of the atom had earlier been used by S. S. Thompson as a basis for a calculation of the most probable angle of scattering of the X-particles.
3. The four giant planets of the solar system are thought to have a “rock-in-a snowball” structure — that is, a small dense rocky core surrounded by a thick shell of ice and covered by thousand of miles of compressed hydrogen and helium.
4. Tsiolkovsky did the first careful spadework in what seemed to many at the time to be a very unpromising garden.

ПОУРОЧНЫЕ РАЗРАБОТКИ СЛОВ

Каждая словарная статья имеет следующую структуру.

Левая — иностранная часть словарной статьи начинается со слова, выделенного в основном тексте урока. Если это слово является корневым, оно дается после порядкового номера с отступом, выделяется жирным шрифтом. После него с тем же отступом даются производные слова этого же корня. Если слово, выделенное в основном тексте урока, не является корневым, оно дается после порядкового номера светлым шрифтом без отступа. От этого слова идет вертикальная линия со стрелкой, которая указывает его место в словообразовательном ряду. Таким образом, все слова данной статьи образуют словообразовательный ряд. Например:

13. brightness

bright *a*

Ex. **bright** colours

brightness *n*

Ex. **brightness** of the
image

яркий, светлый

яркие цвета

яркость

яркость изображения

Предполагается, что слова, данные светлым шрифтом в словообразовательном ряду, известны учащемуся.

Звездочка обозначает слова, известные к началу работы по учебнику и близкие по значению к новому слову по поурочной разработке. Например:

30. explore *v*

Ex. to explore the upper atmosphere

* study *v*

* investigate *v*

* search *v*

исследовать, изучать

исследовать верхние

слои атмосферы

изучать, исследовать

исследовать

исследовать

Условные сокращения:

a (adjective)

имя прилагательное

adv (adverb)

наречие

cj (conjunction)

союз

Ex. (example)

пример

n (noun)

имя существительное

pl (plural)

множественное число

p.p. (past participle)

причастие прошедшего времени

pref

приставка

pron (pronoun)

местоимение

prep (preposition)

предлог

v (verb)

глагол

Арабские цифры со скобкой служат для выделения разных значений одного и того же слова. Например:

gain *v* 1) получать (преимущество, одобрение), приобретать (знания)
2) выиграть, сэкономить

В скобках даются пояснения, а также сравнения с близкими по звучанию и значению словами русского языка. Например: train *v* обучать (ср. тренировать).

Урок первый

1. outset ['autset] *n*

Ex. at the outset
from the outset
• beginning *n*

2. on the one hand

hand [hænd] *n*
→ on the one hand
on the other hand

3. sort [sɔ:t] *n*

Ex. a sort of motion

Ex. a sort of work

Ex. The Earth itself is a sort of magnet.

4. gain [geɪn] *v*

Ex. to gain approval

Ex. to gain knowledge

Ex. Atoms become "ions" when they gain or lose electrons.

Ex. to gain speed

Ex. to gain time

gain *n*

Ex. a gain of negative electrons

Ex. a gain of time

5. universal

universe ['ju:pɪvə:s] *n*

→ universal [ju:nɪ've:səl] *a*

Ex. a universal law of nature

6. acceptance

accept [ək'sept] *v*

Ex. to accept a new design

Ex. By accepting the limitations we...

acceptance [ək'septəns] *n*

Ex. acceptance of a new theory

acceptable [ək'septəbl] *a*

Ex. acceptable characteristics

начало

в начале, сначала
с самого начала

начало

рука

с одной стороны

с другой стороны

вид, род, сорт, нечто вроде, своего рода

вид движения

род работы

Сама Земля представляет собой нечто вроде магнита (своего рода магнит).

1) получать (преимущество, одобрение), приобретать (знания), увеличивать (скорость)

получать одобрение

приобретать знания

Атомы становятся «ионами», когда они приобретают или теряют электроны.

увеличивать скорость

2) выигрывать

выигрывать (экономить) время

1) приобретение, увеличение
захват (приобретение) отрицательных электронов

2) выигрыш, экономия
экономия (выигрыш) во времени

3) усиление, коэффициент усиления

мир, вселенная

всебий (占有ывающий весь мир),

универсальный

всебий закон природы

1) принимать (что-л.)

принять новую конструкцию

2) соглашаться (с чем-л.)

Соглашаясь с ограничениями, мы...

принятие; признание, одобрение
признание новой теории

приемлемый

приемлемые характеристики
(характеристики, которые можно принять, с которыми можно согласиться)

7. remarkable

remark [ri'ma:k] *n*

Ex. some remarks on the compressibility of gaseous fluids
→ remarkable [ri'ma:kəbl] *a*

Ex. remarkable achievements of our science

8. in terms of

term *n*

in terms of

Ex. to measure in terms of weight

Ex. These concepts are most easily understood in terms of simple experiments.

9. give rise

rise [raɪz] *n*

give rise (to smth)

Ex. to give rise to some difficulty

Ex. to give rise to new problems

10. exceed [ɪk'sl:d] *v*

Ex. Gas temperature in this type of engine may exceed 4,000° F.

exceedingly [ɪk'si:dɪŋli] *adv*

Ex. exceedingly high temperature

excess *n*

excessive [ɪk'sesɪv] *a*

in excess of (smth)

Ex. Speeds in excess of 500 miles per hour.

to be in excess (of smth)

Ex. The speed of this aeroplane is in excess of 700 mph.

11. fail [feɪl] *v*

Ex. The experiment failed.

Ex. The pump failed.

Ex. He failed to understand.

Ex. They did not fail to understand the importance of this invention.

failure ['feɪlə] *n*

замечание

некоторые замечания по вопросу сжимаемости газов
замечательный (достойный быть замеченным)

замечательные достижения нашей науки

термин; понятие, выражение

1) в единицах, в величинах
измерять в единицах веса

2) на основании, с точки зрения

Эти теоретические положения легче всего понять на основании простых опытов.

повышение, подъем; увеличение вызывать, создавать (трудность); являться причиной (чего-л.); выдвигать (проблему)

вызвать (создать) некоторые затруднения

вызвинуть (поставить) новые проблемы (задачи)

превышать, превосходить (что-л.)

Температура газа в этом типе двигателя может превышать 4000° по Фаренгейту.

чрезвычайно, очень, в высшей степени

чрезвычайно высокая температура

избыток, излишек

избыточный

свыше, больше

Скорость свыше 500 миль в час.

превышать (что-л.) (Досл. «быть в избытке»)

Скорость этого самолета превышает 700 миль в час.

1) не удаваться, не иметь успеха, потерпеть неудачу; выходить из строя
Опыт не удался.

Насос вышел из строя (отказал).

2) не суметь (что-л. сделать); не (перед инфинитивом другого глагола)
Он не сумел понять. Он не понял.

Отрицательная форма глагола to fail (напр. do not fail) перед инфинитивом другого глагола придает предложению утвердительное значение.

Они сумели понять значение этого изобретения.

1) неуспех, неудача

Ex. to end in failure

Ex. It was necessary to provide an adequate protection against thermal failure.

12. suggest [sə'dʒest] *v*

Ex. to suggest a plan

Ex. The scientists suggested that fission of the nucleus would result in a tremendous outburst of energy.

Ex. As the name of this book suggests it deals with such forms of energy as heat and radiation.

suggestion [sə'dʒestʃən] *n*

13. associate [ə'səʊsɪeɪt] *v*

Ex. A wave is associated with each electron and...
associated *p.p.*

Ex. the transmitter and the associated antenna

14. return

turn *v*

return [rɪ'tə:n] *v*

Ex. to return books to the library

Ex. to return to the atmosphere
return *n*

Ex. a return to the old theory

15. at least

least [li:st] *a*

(превосходная степень от little)
at least

Ex. There are at least two layers in the ionosphere, which...

16. adequate ['ædɪkwid] *a*

Ex. an adequate supply of air

Ex. an adequate definition

Ex. an adequate method

to be adequate

adequately

закончиться неудачей

2) повреждение, авария

Необходимо было создать соответствующую защиту от аварий, вызванных высокой температурой.

1) предлагать

предложить план

2) предполагать, высказывать предположение

Ученые предположили, что расщепление ядра приведет к огромному выбросу энергии.

3) наводить на мысль, давать основание предполагать, подсказывать

Как подсказывает название этой книги, в ней рассматриваются такие формы энергии, как теплота и излучение.

предположение

связывать(ся), ассоциироваться

С каждым электроном связана волна и...

связанный с (ним,ней) (в функции левого определения)

передатчик и связанный с ним антenna

1) вращать(ся), поворачивать(ся)

2) переходить к (чему-л.)

возвращать(ся), вернуть(ся)

возвращать книги в библиотеку

вернуться в атмосферу

возврат, возвращение

возвращение к прежней теории

наименьший

по крайней мере (Досл. «как самое малое»)

В ионосфере имеется по крайней мере два слоя, которые...

соответствующий, необходимый, достаточный, правильный, точный, удовлетворительный, подходящий пригодный

необходимое количество воздуха

правильное (точное) определение

удовлетворительный (подходящий) метод

подходить, быть пригодным для (чего-л.), соответствовать поставленной цели

удовлетворительно, надлежащим образом

17. **assume** [ə'sju:m] *v*

Ex. Let us assume that...

Ex. The antenna may assume a number of forms depending on...

assumption [ə'sʌmpʃn] *n*

Ex. to make some assumptions

18. **beam** [bi:m] *n*

Ex. a beam of light

19. **correspond** [,kɔrɪs'pɔnd] *v*

Ex. These results correspond to the laboratory data

correspondence

[,kɔrɪs'pɔndəns] *n*

Ex. There is a close correspondence between the diameter of the wire and its electrical resistance.

corresponding

[,kɔrɪs'pɔndɪŋ] *a*

correspondingly *adv*

20. **nearly** ['niəli] *adv*

Ex. nearly vertical

21. **twice** *adv*

Ex. twice the speed of this airplane

twice as much

22. **ordinary** ['ɔ:dɪnəri] *a*

Ex. an ordinary experiment

* conventional *a*

* common *a*

23. **distribute** [dɪ'stribju:t] *v*

Ex. to distribute the load along the wing

distribution [dɪ'stri'bju:ʃn] *n*

Ex. the distribution of energy

distributive [dɪ'stribjutɪv] *a*

24. **just as**

just [dʒʌst] *adv*

→ just as

Ex. The rudder of the airplane works just as the rudder on a boat.

25. **uniform** ['ju:nɪfɔ:m] *a*

Ex. uniform shear

Ex. uniform motion

Ex. uniform speed

uniformly *adv*

1) предполагать

Предположим, что...

2) принимать, приобретать

Антенна может быть выполнена в нескольких вариантах в зависимости от... (Досл. «может принимать несколько форм»).

предположение

сделать некоторые предположения

луч; пучок лучей

луч света

соответствовать (чему-л.);

согласовываться (с чем-л.)

Эти результаты соответствуют лабораторным данным.

соответствие, соотношение, связь

Существует тесная связь между сечением провода и его электрическим сопротивлением.

соответствиный, соответствующий

соответствию

почти, приблизительно

почти вертикальный

вдвое, в два раза (больше)

в два раза больше скорости

этого самолета

вдвое больше, в два раза больше

обычный, обыкновенный, простой

обычный опыт

обычный, стандартный

обычный, часто встречающийся

распределять

распределять нагрузку по крылу

распределение

распределение энергии

распределительный

1) точно, как раз

2) только, лишь

3) только что

точно так же, как, так же, как (Досл. «точно, как»)

Руль направления самолета действует точно так же, как руль лодки.

1) единообразный, однородный

однородный сдвиг

2) равномерный

равномерное движение

3) постоянный

постоянная скорость

1) единообразно

2) однородно

3) равномерно

uniformity *n*
Ex. uniformity of nature

26. irregularity
regular ['regjulə] *a*
regularity [rɪ'gjulərɪtɪ] *n*

→ irregularity
[ɪ,regju'lærɪtɪ] *n*
Ex. irregularities of motion

Ex. irregularities of the surface

27. discontinuous
continue [kən'tɪnju] *v*
continuous [kən'tɪnjuəs] *a*
Ex. continuous discharge
Ex. continuous line
Ex. continuous load
continual [kən'tɪnjuəl] *a*
Ex. a continual change
discontinuous
[dɪs'kən'tɪnjuəs] *a*
Ex. discontinuous function
Ex. discontinuous waves
Ex. the discontinuous structure of the gas
discontinuity
['dɪs,kɔntɪ'nju:itɪ] *n*

28. in a similar way
way [wei] *n*

→ in a similar way
in this way
to be under way

Ex. This program is now under way.

29. presence
present ['prezənt] *a*

Ex. to be present at a lecture
Ex. at the present time
Ex. present achievements in physics

→ presence ['prezəns] *n*
Ex. the presence of meteorites in space

30. readily
ready ['redi] *a*

→ readily *adv*
Ex. a readily adjustable device

31. dual ['du:əl] *a*

Ex. the dual character of light
Ex. dual controls

1) единство, едиництво
единство природы
2) однородность
3) равномерность

правильный, регулярный; постоянный
правильность, регуляриность;
порядок, система
1) беспорядочность

беспорядочное движение

2) неровность
неровности поверхности

продолжать(ся), не прерывать(ся)
непрерывный, сплошной, постоянный
и непрерывный разряд
сплошная линия
постоянная нагрузка

непрерывный
непрерывное изменение
прерывистый, не сплошной, не постоянный
прерывая функция (матем.)
затухающие волны (радио)
прерывистая (не сплошная)
структура газа
отсутствие непрерывности, перерывы,
разрывы, неравномерность

1) путь
2) метод, способ
таким же путем, таким же способом
(методом, образом)
таким путем (методом, способом)
осуществляться (Досл. «быть на пути» к чему-л.)
Эта программа сейчас осуществляется.

1) присутствующий, имеющийся на лице
присутствовать на лекции
2) настоящий, современный
в настоящее время
современные достижения физики
присутствие, наличие
и наличие метеоритов в космосе

1) готовый
2) легкий
легко, без труда
легко регулируемый прибор

1) двойственный
2) двойной (состоящий из двух частей)
двойственный характер света
двойное управление

32. complementary	complement [ˈkɒmplɪmənt] <i>v</i>	дополнять (друг друга)
	Ex. complementary of an angle	дополнение до прямого угла (матем.)
→	complementary [kɒmplɪ'mentəri] <i>a</i>	дополнительный; взаимодополняю- щий, добавочный
	Ex. a complementary angle	дополнительный угол
	Ex. complementary aspects	точки зрения, взаимодопол- няющие друг друга
33. domain [də'meɪn] <i>n</i>		область, сфера
	Ex. the domain of physics	область физики
34. doubt [daʊt] <i>n</i>		сомнение
	without doubt	без сомнения, несомненно, вне сом- нения
	beyond doubt	
	no doubt	
	Ex. Without doubt, these problems are best solved by experiment.	Несомненно, такие проблемы лучше всего решаются эксперимен- тально.
	doubt <i>v</i>	сомневаться (в чем-л.)
	Ex. to doubt the accuracy of the measurements	сомневаться в точности изме- рений
	doubtful ['daʊtfʊl] <i>a</i>	сомнительный
	Ex. a doubtful result	сомнительный результат
	undoubtedly <i>adv</i>	несомненно, бесспорно
	Ex. Peace, undoubtedly, serves the interests of all people.	Мир, несомненно, отвечает ин- тересам всех народов.
35. evidence	evident ['evidənt] <i>a</i>	очевидный, ясный
	Ex. an evident fact	очевидный факт
	evidently ['evidəntli] <i>adv</i>	очевидно, несомненно
	Ex. Leonardo da Vinci, evidently, gave much thought to flying.	Леонардо да Винчи, очевидно, уделял много внимания вопросам по- лета.
	* obvious <i>a</i>	очевидный, явный
	* obviously <i>adv</i>	очевидно, конечно
	evidence ['evidəns] <i>n</i>	1) доказательство, основание 2) данные
	Ex. The spectroscope shows evidence of oxygen in the atmosphere of Mars.	Спектроскопические исследования доказывают наличие (дают дока- зательства наличия) кислорода в атмосфере Марса.
36. fundamental [fʌndə'mentəl] <i>a</i>		1) основной, коренной, существенный основное правило коренные (существенные) изме- нения
	Ex. a fundamental rule	2) основополагающий, теоретический теоретические исследования в сущности, по существу, по сути основы
	Ex. fundamental changes	основы физики (основные прин- ципы, основные положения)
	Ex. fundamental research	
	fundamentally <i>adv</i>	
	fundamentals <i>n pl</i>	
	Ex. fundamentals of physics	

Урок второй

1. unlike

like *a*

alike [ə'laɪk] *a*

похожий

похожий, подобный

Ex. These two models are alike.
liken ['laikən] v

Ex. The rocket can be likened to a continually firing machine-gun.
unlike ['ʌn'laik] a
like prp

Ex. to operate like a rudder
unlike prp
likely adv

Ex. The paper is likely to be of interest to many people.
unlikely ['ʌn'laikli] adv

Ex. The temperature is unlikely to rise...

2. infant ['ɪnfənt] a

Ex. This field of science is still in an infant state.

3. grown-up ['groun'ʌp] n

4. by now
now adv
by prp

by now

Ex. By now many types of these instruments have been constructed.

by then

Ex. By then the results of the experiments had been known to many workers.

5. to be in use

use [ju:s] n
to be in use

Ex. Electronic devices for control of solar telescopes have been in use for many years.

Словосочетания такого типа (to be + существительное с предлогом) обозначают «быть, находиться в каком-то состоянии». На русский язык они переводятся глаголом или соответствующим словосочетанием to be under study

to be in operation

to be in service

to be in existence

to be under development

Эти две модели **похожи**. сравнивать (с чем-л.), уподоблять (чему-л.)

Ракетный двигатель **может** сравнивать с непрерывно стреляющим пулеметом. непохожий подобно

действовать подобно рулю в отличие от вероятно (в составе сложного сказуемого типа is likely to return)

Эта статья, вероятно, представляет интерес для многих людей. маловероятно (в составе сказуемого такого же типа)

Маловероятно, чтобы температура повысилась...

(Температура, вероятно, не повысится... Температура вряд ли повысится...)

начальный

Эта отрасль науки только начинает развиваться (Досл. «находится на начальном этапе»)

взрослый (человек)

сейчас, в настоящее время (перед словами, обозначающими время, переводится предлогом «к»)

к настоящему времени, сейчас

К настоящему времени уже создано много типов таких приборов.

к тому времени

К тому времени результаты опытов были известны многим исследователям.

пользование, применение
использоваться, применяться

В течение многих лет для управления солнечными телескопами используются электронные приборы.

изучаться, находиться в стадии изучения

действовать, работать, быть в действии

служить, действовать, работать

существовать

разрабатываться, находиться в стадии разработки

to be under construction

to be under test

to be under consideration

to be in progress

- * **to be in excess (of smth)**
- * **to be under way**

6. come [kʌm] (came, come) *v*

Ex. The word "television" has come to mean the essentially instantaneous transmission of...

7. instantaneous

instant ['ɪnstənt] *n*

Ex. at this instant

the instant

- * moment *n*

- * minute *n*

instantaneous

[,ɪnstən'teɪnəs] *a*

Ex. instantaneous transmission

instance ['ɪnstəns] *n*

for instance

8. image ['ɪmɪdʒ] *n*

Ex. the image of the target on the sight

imagine ['ɪmædʒɪn] *v*

Ex. I imagine the early airplanes powered with steam engines.

imaginable

[,ɪmædʒɪnəbl] *a*

Ex. the simplest form of propulsion unit imaginable

imaginary ['ɪmædʒɪnəri] *a*

Ex. The magnetic lines of force are purely imaginary.

imagination

[,ɪmædʒɪ'neɪʃn] *n*

9. involve [ɪn'vɒlv] *v*

Ex. An adequate amount of high Mach flights was involved in the test.

- * include *v*

Ex. This method involves many difficulties.

involved *p.p.*

строиться, находиться в стадии строительства

испытываться, находиться в стадии испытаний

рассматриваться, находиться в стадии рассмотрения

происходить, иметь место

превышать (что-л.)

осуществляться, происходить, находиться в стадии разработки, строительства

1) приходить, приезжать

2) происходить, случаться

3) стать (перед инфинитивом другого глагола)

Слово «телевидение» стало означать по существу мгновенную передачу...

мгновение, момент

в этот момент

в тот момент, когда

момент

момент, минута

мгновенный, немедленный

мгновенная передача

пример, случай

например

изображение, образ

изображение цели в прицеле

воображать, представлять себе

Представьте себе первые самолеты с паровыми двигателями.

вообразимый, который можно себе

представить

самолет, который можно себе представить

воображаемый, мнимый

Магнитные силовые линии являются чисто воображаемыми линиями.

воображение, фантазия

1) включать (в себя)

В это испытание было включено достаточно большое количество полетов на высоких числах М.

включать (в себя); содержать (в себе)

2) быть связанным (с чем-л.); влечь за собой, вызывать

Этот метод влечет за собой (вызывает) много трудностей.

в функции правого определения: связанный с (чем-л.), рассматриваемый, данный, имеющийся, имеющий место, используемый и т. п.

Ex. The technical problems involved in the construction of an ion rocket are considered in some detail below.

Ex. the process involved

10. point [pɔɪnt] *n*

Ex. the main points of the article at this point

Ex. At this point it is necessary to leave analogies and turn to the mathematical equations up to this point

Ex. Up to this point the air resistance was not taken into consideration.

point *v*

Ex. The gyro-compass always points to the geographic north.

point out *v*

Ex. It is necessary to point out that...

11. visible ['vɪzəbl] *a*

Ex. visible world

vision ['vɪʒən] *n*

Ex. field of vision

12. smoothly

smooth [smu:ð] *a*

Ex. smooth motion

smoothly ['smu:ðli] *adv*

Ex. to move smoothly

13. conform [kən'fɔ:m] *v*

Ex. to conform with the rise in temperature

14. brightness

bright [braɪt] *a*

Ex. bright colours

→ brightness ['braɪntɪs] *n*

Ex. brightness of the image

15. variable

vary ['veəri] *v*

various ['veəriəs] *a*

variety [və'reti] *n*

Ex. a variety of methods

→ variable ['veəriəbl] *a*

Ex. variable speed

variable *n*

Ex. an independent variable

16. channel ['tʃænl] *n*

17. take advantage

→ advantage [əd'veɪntɪdʒ] *n*

→ take advantage (of smth)

Технические проблемы, связанные с конструированием ионной ракеты, рассматриваются несколько подробнее ниже.

процесс, имеющий место

1) точка

2) положение, вопрос, дело.

основные положения этой статьи

здесь, на этом этапе, на этой стадии

На этой стадии необходимо перейти от аналогий к математическим уравнениям.

до сих пор

До сих пор сопротивление воздуха не принималось во внимание.

указывать (на что-л.)

Гирокомпас всегда указывает на географический север.

указывать, отмечать

Необходимо указать, что...

видимый

видимый мир

1) зрение

поле зрения

2) обзор

плавный, гладкий

плавный ход

плавно, гладко

двигаться плавно

согласовываться (с чем-л.), соответствовать (чему-л.)

соответствовать повышению температуры

яркий, светлый

яркие цвета

яркость

яркость изображения

изменять(ся), отличать(ся)

различный, разнообразный

1) множество, много, многообразие

2) ряд, несколько

несколько (ряд) методов

переменный

переменная скорость

переменная (величина)

независимая переменная

канал

пренебречь

использовать (что-л.); воспользоваться (чем-л.)

Ex. to take advantage of this design

использовать данную конструкцию (воспользоваться ее преимуществами)

Пассивная форма:

advantage is taken (of smth)

используется (что-л.)

Ex. Advantage must be taken of special properties of germanium.

Необходимо использовать особые свойства германия.

Другие словосочетания с глаголом to take:

• to take part

принимать участие

• to take place

иметь место, происходить

• to take care

заботиться (о чем-л.); принимать меры (для чего-л.)

• to take into consideration

принимать во внимание

• to take into account

принимать во внимание, учитывать

18. slight [saɪt] *n*

1) зрение

Ex. at first sight

2) взгляд

Ex. in sight

3) поле зрения

• vision *n*

зрение, поле зрения

19. finite ['faɪnɪt] *a*

ограниченный, имеющий предел

Ex. finite number

ограниченное (определенное) количество

20. shade [[feɪd] *n*

тень

shadow ['ʃædou] *n*

тень

→ shade *v*

затенять

21. provided

1) давать, обеспечивать, снабжать

provide [prə'veaid] *v*

2) представлять собой, являться
Прямоточный реактивный двигатель представляет собой хороший тип двигателя.

Ex. The ramjet provides a very satisfactory engine.

1) обеспече

provision [prə'veɪʒn] *n*

2) мера (предосторожность)
предусматривать (что-л.), обеспечи

to make provision (for smth)

вать (что-л.), принимать меры (для чего-л.)
обеспечить увеличение температуры

Ex. to make provisions for increasing the temperature

предусматривается (что-л.), принимаются меры (для чего-л.)

Пасовая форма:

Необходимо предусмотреть уменьшение скорости ракеты вблизи Луны.

provision is made (for smth)

при условии, что; если только

Ex. Provision should be made to reduce the velocity of the rocket in the vicinity of the moon.

При условии, что кинетическая энергия спутника достаточно высока для преодоления силы тяжести и лобового сопротивления...

→ provided [prə'veaidɪd] *cj*

при условии, что; если только

Ex. Provided the satellite's kinetic energy is high enough to overpower gravity and drag...

Использование радиоактивных материалов не представляет опасности при условии соблюдения некоторых предосторожностей.

provided that *cj*

при условии, что; если только

Ex. There is no danger in using radioactive materials provided that some precautions are taken.

providing *cj*

при условии, что; если только

Ex. If two horse-shoe magnets are placed face to face, they will attract each other, providing that the distance is not too great.

22. compose [kəm'pouz] *v*
 Ex. to be composed of many ingredients
 composition [kəmprə'zisn] *n*
 Ex. the composition of a compound

23. discrete [dɪs'kri:t] *a*

24. satisfactory
 satisfy ['sætisfai] *v*
 Ex. to satisfy the terms
 satisfactory
 [,sætis'fækfəri] *a*
 Ex. satisfactory results

25. view
 view [vju:] *n*
 Ex. the view from the pilot's cockpit
 Ex. to take a different view
 point of view
 view point (viewpoint)
 * standpoint ['stændpunkt] *n*
 Ex. From this point of view, aircraft instruments may be divided...
 In view of *prep*
 Ex. In view of recent developments of jet propulsion... with a view to
 Ex. They carried out all the necessary work with a view to testing the craft.
 view [vju:] *v*
 Ex. to view the subject from all its aspects
 * consider *v*

26. succession [sək'seʃn] *n*
 Ex. succession of events

Ex. In an ordinary a.c. circuit in succession
 Ex. In an ordinary a.c. circuit the current goes through all its phases in succession.
 succeeding [sək'si:dɪŋ] *a*
 Ex. In the succeeding chapters we shall speak of photoelectricity.

27. precede [pri:'zi:d] *v*

Если два подковообразных магнита поместить разнокраинными полюсами друг к другу, они будут притягивать друг друга при условии, что расстояние между ними не очень велико.

составлять (что-л.)
 состоять (быть составленным)
 из многих ингредиентов
 строение, состав
 состав сложного вещества

отдельный, дискретный

удовлетворять, соответствовать
 удовлетворять условиям
 удовлетворительный

удовлетворительные результаты

1) вид, обзор
 обзор из кабины пилота

2) взгляд, мнение
 иметь другое мнение (другой взгляд)

точка зрения

С этой точки зрения авиационные приборы могут быть разделены на...
 ввиду, принимая во внимание
 Ввиду последних достижений в области реактивных двигателей... с целью, с намерением
 Они выполнили всю необходимую работу с целью проведения испытаний самолета.

рассматривать, обозревать
 рассмотреть вопрос со всех сторон
 рассматривать, считать

1) последовательность
 последовательность событий

2) непрерывный ряд
 непрерывный ряд импульсов последовательно

В обычной цепи переменного тока ток проходит через все фазы последовательно. — последующий, следующий
 В последующих главах мы будем говорить о фотоэлектричестве.

предшествовать (чему-л.)

Ex. It is usual to precede experiments by some basic research.

Ex. the preceding chapter

28. **scene** [sī:n] *n*

29. **convey** [kən'vei] *v*

Ex. Air conveys sound.

Ex. to convey information

- * conduct *v*
- * transmit *v*

30. **analyse** ['ænəlaɪz] *v*

Ex. to analyse light by means of a prism

Ex. to analyse the performance of an airplane

analysis [ə'næləsɪz] *n*

31. **explore** [ɪks'plɔ:] *v*

Ex. to explore the upper atmosphere

- * study *v*
- * investigate *v*
- * search *v* }

an exploring element

exploration
[eksplɔ:r'eɪʃn] *n*

Ex. explorations in space

- * study *n*
- * investigation *n*
- * research *n* }

explorer [ɪks'plɔ:rə] *n*

Ex. Zavadovsky Island was discovered by two Russian explorers Bellinshausen and Lazarev more than a hundred years ago.

32. **locate** [lou'keɪt] *v*

Ex. to locate an enemy

Ex. to locate in the rear of the fuselage

33. **link** [lɪŋk] *n*

Ex. at the receiving end of the link

link *v*

Ex. The development of rocket propulsion has been linked with the use of the rocket primarily as a military weapon.

- * connect *v*

34. **screen** [skrī:n] *n*

Ex. the screen of a cathode-ray tube

Обычно опытом предшествуют некоторые теоретические исследования.

предыдущая глава
сцена, место действия

- 1) передавать, проводить
Воздух проводит звук.
- 2) сообщать
сообщать данные
проводить, передавать
передавать

- 1) разлагать (на составляющие части)
разложить свет при помощи призмы
- 2) анализировать
анализировать характеристики самолета
анализ

исследовать, изучать
исследовать верхние слои атмосферы
изучать, исследовать

исследовать

развертывающий элемент (в телевизионном передатчике)

исследование, открытие

исследования в космосе

исследование

исследователь
Остров Завадовского был открыт двумя русскими исследователями Беллинсгаузеном и Лазаревым более 100 лет тому назад.

- 1) определять место (положение),
обнаруживать
определить местоположение противника
- 2) располагать
расположить в задней части фюзеляжа

звено (цепь); связь; соединение
на приемном конце линии связи

связывать (ся); соединяться
Создание ракетного двигателя было связано с применением ракет главным образом в качестве военного оружия.

соединять, связывать

экран
экран электроннолучевой трубки

Урок третий

1. warfare [ˈwɔ:fə] n

Ex. modern warfare

2. nevertheless [nə'veðəs] cʃ

Ex. Experiments provided most interesting data; nevertheless, a detailed theoretical study is necessary to look deeper into the phenomena.

- yet cʃ
- still cʃ }

3. be aware

aware [ə'weə] a

→ be aware (of smth)

Ex. Roentgen was aware of the existence of X-rays.

4. incendiary [in'sendjəri] n

5. suppose [sə'pouz] v

Ex. They suppose the device will work.

Ex. The charged particles are supposed to have...

- assume v
- believe v
- consider v
- suppose (supposing) cʃ

Ex. Suppose the temperature reached 200° F, then...

Ex. These data may prove very important supposing they are accurate.

supposition [səpə'zɪʃn] n

6. ignite [ɪg'nait] v

Ex. to ignite the mixture in the combustion chamber

Ex. Combustible materials ignite if...

ignition [ɪg'nɪʃn] n

Ex. ignition of the mixture

7. ancient ['eɪnʃənt] a

Ex. conceptions of ancient scientists

8. succeed [sək'si:d] v

Ex. Experiments succeeded theoretical research.

- follow v

Ex. The theory of electrons succeeded in explaining electromagnetic phenomena.

Ant. fail v

success [sək'ses] n

война, методы ведения войны
современная война, современные
методы ведения войны
тем не менее, однако, все же

Опыты дают очень интересные данные; тем не менее необходимо более глубокое теоретическое исследование для того, чтобы лучше понять эти явления.

тем не менее, однако

сознавающий, знающий, осведомленный
знать, сознавать (что-л.), отдавать
себе отчет (в чем-л.)

Рентген знал о существовании
Х-лучей.

зажигательное вещество
предполагать, полагать

Они предполагают, что этот
прибор будет работать.

Заряженные частицы, как полагают
имеют...
предполагать
думать, полагать
полагать, считать
если, предположим, исходя из пред-
положения, что

Предположим, что температура
достигла 200° F, тогда...

Эти данные могут оказаться очень
важными, если (исходя из
предположения, что) они точ-
ные.

предположение
зажигать(ся), воспламенять(ся)
зажечь смесь в камере сгорания

Горючие материалы воспламеня-
ются, если...
воспламенение, зажигание
зажигание смеси (в двигателе
внутреннего сгорания)
древний, античный
взгляды древних ученых

1) следовать за (чем-л.), происходить
после (чего-л.)

Опыты были проведены после
теоретических исследований.
следовать (за чем-л.)

2) удаваться, иметь успех (перед
in+ing)

Электронной теории удалось
объяснить электромагнитные явления.

не удаваться, не иметь успеха
успех, удача

Ant. failure *n*
successful *a*
successfully *adv*

9. destruction [dɪstrəkʃn] *n*
Ex. to prevent destruction of the working parts
destroy [dɪstrɔɪ] *v*
Ex. to destroy a building
* break (up, down) *v*
destructive [dɪstraktɪv] *a*
Ex. destructive forces

10. disposal
dispose [dɪspouz] *v*
Ex. to dispose troops
dispose of (smth)
disposal [dɪspouzəl] *n*
Ex. The scientist had all the necessary equipment at his disposal.

Ex. the disposal of waste heat

11. capable ['keɪpəbl] *a*
Ex. a device capable of converting electrical energy into mechanical energy
* able *a*
capability [keɪpə'bɪlɪtɪ] *n*
Ex. the capability of hot bodies to radiate energy
capabilities *n pl*
Ex. The rocket engine possesses unique capabilities as a propulsion mechanism for travelling into space.

* capacity *n*

12. attain ['ætein] *v*
Ex. to attain high velocity
* reach *v*
* achieve *v*
* obtain *v*
* get *v*
attainable [ə'teinəbl] *a*
Ex. attainable speed
* obtainable *a*
attainment [ə'teinmənt] *n*
Ex. the attainment of the desired results
* achievement *n*

13. at all
all [ɔ:l] *a*
at all
Ex. Contrary to alpha rays and beta rays gamma rays have no charge at all.

неуспех, неудача
успешный, удачный
успешно, удачно
разрушение, уничтожение
предотвратить разрушение рабочих частей
разрушать
разрушить здание
разрушать
разрушительный
разрушительные силы

1) располагать, размещать
расположить войска

2) избавиться от (чего-л.), устраниТЬ, ликвидировать (что-л.)

1) распоряжение, возможность распорядиться (чем-л.)
Ученый имел в своем распоряжении все необходимое оборудование.

2) удаление, устранение, отвод (чего-л.)

отвод ненужного тепла
способный, одаренный
машина, способная превращать электрическую энергию в механическую
способный
способность
способность горячих тел излучать энергию
возможности

Только ракетный двигатель обладает теми возможностями, которые позволяют использовать его в качестве двигателя для полетов в космос.

способность, мощность
достигать, добиваться
достичь высокой скорости
достигать, доходить (до чего-л.)
достигать (цели), добиваться
достигать, добиваться
достигать, получать
достижимый (такой, которого можно достичь, добиться)
достижимая скорость (скорость, которой можно добиться)
достижимый
достижение
достижение желательных результатов
достижение

весь, вся, все, всё
вообще

В противоположность альфа-лучам и бета-лучам гамма-лучи вообще не имеют никакого заряда.

above all

Ex. That arrangement was, above all, most useful for providing extra power.
after all

Ex. After all, a nonmetal may possess one or more characteristics typical of metals.
all over

Ex. all over the world
first of all

Ex. First of all, we have to examine the data available.

14. abandon [ə'baendən] *v*

Ex. The method was soon abandoned.

15. expand [iks'pænd] *v*

Ex. Gases expand at high temperature.

expansion [iks'pænʃn] *n*

16. missile ['mɪsəl] *n*

17. as early as
early ['e:li] *adv*

as early as

Ex. As early as the 19th century...

18. cannon ['kænən] *n*

* gun [gʌn] *n*

19. no longer

long [lɒŋ] *a*

Ex. a long line

Ex. a long distance

Ex. a long period of time
long *adv*

Ex. The piston engine has long been the only power plant for aircraft.

→ long ago

Ex. The theory was abandoned long ago.

no longer

Ex. There came a stage when people no longer regarded flight as a supernatural phenomenon.

as long as }
so long as }

Ex. The product of the pressure by the volume of given mass of gas is constant as long as the temperature does not change.

long before

Ex. Some phenomena were applied long before they were

главным образом, прежде всего

Это устройство оказалось прежде всего очень полезным для создания дополнительной мощности. в конце концов (Досл. «после всего»)

В конце концов неметалл может иметь одно или несколько свойств, типичных для металла. повсюду

во всем мире

прежде всего

Прежде всего мы должны проверить имеющиеся данные. отказываться (от чего-л.)

От этого метода скоро отказались. расширяться, увеличивать(ся) в объеме

Газы расширяются при высокой температуре. расширение, распространение артиллерийский снаряд (сейчас употребляется в основном для обозначения управляемых ракет)

рано

уже (еще) (Досл. «так рано, как»)

Уже в 19 столетии...

Еще в 19 столетии...

пушка, орудие

пушка, орудие

1) длинный, большой (о расстоянии)
длинная линия
большое расстояние

2) длительный (о времени)

длительный период времени
в течение длительного времени

В течение длительного времени поршневой двигатель был единственной силовой установкой для самолетов.

давно

От этой теории давно отказались.

больше не

Наступило время, когда люди больше не считают полет сверхъестественным явлением.

пока; до тех пор, пока; при условии, что; поскольку

Произведение давления на объем данной массы газа есть величина постоянная при постоянной температуре (Досл. «до тех пор, пока температура не изменяется»).

задолго (до того, как)

Некоторые физические явления практически использовались задол-

understood.
 length [leŋθ] *n*
 Ex. *wave* *length*
 lengthen ['leŋθən] *v*
 Ex. *to lengthen a line*

20. **armour** ['ɑ:mə] *n*
 armoured ['ɑ:məd] *a*
 Ex. *armoured vehicle*

21. **make out**
 make [meɪk] *v*
 → make out *v*
 Ex. *to make out the practical value of the research*
 make up *v*
 Ex. An atom is made up of a nucleus and one or more electrons.
 Ex. *to make up a list*
 Ex. *to make up for the loss of oxygen due to the drop of pressure with increasing altitude*

22. **thrower**
 throw [θrou] (threw, thrown) *v*
 Ex. A gun *throws* a shell.
 → thrower ['θrouə] *n*

23. **troops** [tru:pз] *n pl*
 Ex. armoured *troops*

24. **in spite of** [spaɪt] *prep*
 Ex. *In spite of* some improvements the modified design does not meet all requirements.
 despite [dis'paɪt] *prep*
 Ex. *Despite* the universal acceptance of this concept...

25. **inferior** [in'feɪərɪə] *a*
 Ex. steel of *inferior* characteristics
 to be *inferior*
 Ex. Steel is *inferior* in strength to some plastics.

26. **due to**
 due [du:] *a*
 Ex. with *due* attention
 Ex. a *due* explanation
 Ex. Kinetic energy is energy *due to* motion.

го до того, как их поняли.
 длина
 длина волны
 удлинять
 удлинять линию
 броня
 бронированный
 бронированная машина

делать
 разбираться (в чем-л.), понимать (что-л.)
 понять практическое значение этих исследований
 1) составлять (если дальше стоит предлог *of* или предлога вообще нет)
 Атом **состоит** (составлен) из ядра и одного или нескольких электронов.
 составить список
 2) компенсировать, восполнять, возмещать (если дальше стоит предлог *for* или *by*)
 компенсировать (восполнить) потерю кислорода, обусловленную падением давления при увеличении высоты

бросать, метать
 Пушка **выбрасывает** снаряд.
 метательное устройство
 войска
 бронетанковые части
 несмотря на (что-л.)
 Несмотря на некоторые усовершенствования, модифицированная модель не отвечает всем требованиям.
 несмотря на (что-л.)
 Несмотря на всеобщее признание этой теории...
 плохой (по качеству), низкий, худший
 сталь плохого (невысокого) качества
 уступать (по качеству)
 Сталь **уступает** в прочности (хуже по прочности) некоторым пластмассам.

1) **должный**, надлежащий, правильный (в функции левого определения)
 с **должным** вниманием
 правильное объяснение
 2) обусловленный (в функции правого определения и предикатива)
 Кинетическая энергия есть энергия, обусловленная движением.

Ex. Ionization of the upper atmosphere is due to Sun's ultra-violet radiation.
due to prp

Ex. Due to centrifugal forces, bodies at the equator weigh less than they weigh at the poles.

27. projectile

project [prə'dʒekt] v

Ex. to project rays of light
• throw v

project ['prədʒekt] n

Ex. aircraft reactor project

Ex. Man-in-space project.

→ projectile ['prədʒɪktail] n

28. lack [læk] n

Ex. lack of stability

lack v

Ex. The system lacks accuracy.

29. facilities

facilitate [fə'silitet] v

Ex. to facilitate the execution of the task

facility [fə'siliti] n

facilities n pl

Ex. research facilities

Ex. laboratory facilities

30. ton [tʌn] n

31. prevent [pri'vent] v

Ex. They could not prevent the release of detailed information.

Ant. allow v

Ex. to prevent war

prevention [pri'venʃn] n

32. it appears (that)

appear [ə'piər] v

Безличное предложение:

It appears (that)...

Ex. It appears that first rockets were invented in the thirteenth century.

Ионизация верхних слоев атмосферы обусловлена действием ультрафиолетовых солнечных лучей. благодаря, вследствие (чего-л.)

Благодаря центробежным силам тела на экваторе весят меньше, чем они весят на полюсах.

1) проектировать
2) выдаваться, выступать (вперед)

3) бросать
бросать лучи света

1) проект
проект авиационного реактора

2) программа исследований
Программа исследований «Человек в космосе».

снаряд

недостаток, нехватка, отсутствие недостаток стабильности (отсутствие достаточной стабильности)

недоставать (чего-л.), испытывать недостаток (в чем-л.), не хватать (чего-л.)

Этой системе недостает точности.

облегчать, содействовать
облегчить выполнение задачи

легкость
средства; оборудование, устройство, установка
оборудование для научно-исследовательской работы
лабораторное оборудование

тония

1) мешать, препятствовать, не позволять, не допускать

Они не могли помешать опубликованию подробной информации. позволять, допускать

2) предупреждать, предотвращать
предотвратить войну
предотвращение

казаться, оказываться

Кажется..., Оказывается..., По-видимому...

Оказывается, первые ракеты были изобретены в 13 веке.

Урок четвертый

1. introduce [int्र'dju:s] *v*

Ex. to introduce a new method

Ex. to introduce to the terms used in aircraft engineering

introduction

[,int्र'dʌkʃn] *n*

introductory

[,int्र'dʌktɔri] *a*

Ex. an introductory course

2. inlet ['inlet] *n*

Ex. inlet temperature

Ex. the inlet of the ramjet

Ant. outlet ['autlet] *n*

Ex. outlet pressure

3. chamber ['tʃeimbə] *n*

Ex. combustion chamber

4. final ['fainəl] *a*

Ex. the final chapter

finally ['fainəli] *adv*

Ex. Starting with a ton of pitch-blende the Curles finally separated out 0.02 gr. of a substance which was more powerful than uranium.

* al last

5. absence ['æbsəns] *n*

Ex. absence of information

* Ant. presence *n*

absent ['æbsənt] *a*

6. permit [pa'mit] *v*

Ex. to permit supersonic flight to be accomplished

* allow *v*

permissible [pa'misəbl] *a*

Ex. permissible voltage

permission [pa'miʃn] *n*

7. extremely

extreme [iks'tri:m] *a*

Ex. extreme position

Ex. extreme range

extremely [iks'tri:ml] *adv*

Ex. extremely high velocities

extreme [iks'tri:m] *n*

Ex. wide temperature extremes

8. cost [kɔst] *n*

Ex. Low cost is one of the advantages...

1) вводить

ввести новый метод

2) познакомить, ознакомить (с чем-л.)

(Ср. «ввести в курс дела»)

ознакомить с терминологией, применяемой в области самолетостроения

введение, предисловие

вводный, предварительный

вводный курс

1) впуск

температура впуска

2) входное устройство

входное устройство прямоточного двигателя

выпуск, выход

давление на выходе

камера

камера сгорания

конечный, заключительный (Ср. «финал»)

заключительная (последняя) глава

в конце концов, и наконец, в конечном счете, в заключение

Начав с тонны уранита, Кюри в конце концов выделили 0,02 грамма вещества более активного, чем уран.

наконец

отсутствие

отсутствие информации

присутствие

отсутствующий

позволять, допускать

позволить выполнить сверхзвуковой полет

позволять, допускать

допустимый, позволительный

допустимое напряжение

позволение, разрешение

крайний, предельный

крайнее (предельное) положение и а большая (предельная)

дальность (Ср. «экстремальные» величины)

чрезвычайно, крайне

чрезвычайно высокие скорости

крайность, предельное положение

резкие колебания (крайности) температуры

цена, стоимость

Низкая стоимость есть одно из преимуществ...

9. **specific** [spɪ'sifik] *a*
 Ex. **specific** qualities

Ex. **specific** weight
 specify ['speʃɪfai] *v*

Ex. to **specify** the velocity spectrum
specification
 [spesɪfɪ'keʃn] *n*

Ex. ...whether the receiver is performing according to the required sensitivity **specification**...

10. **competitive**
 compete [kə'mpi:t] *v*

Ex. to compete with piston engine
competitive [kəm'petitɪv] *a*

Ex. This engine is competitive with a turbojet in fuel consumption.
competition [,kɒmpɪ'tɪʃn] *n*

Ex. a competition for a prize

11. **ratio** ['reɪʃnəʊ] *n*
 Ex. charge-to-mass ratio
 Ex. ratio of transformation
 Ex. ratio of compression

12. **external** [eks'tə:nəl] *a*
 Ex. an external action
 * Ant. internal *a*
 exterior [eks'tɪərɪət̩] *a*
 Ex. exterior ballistics
n

Ex. the exterior of the engine
 * Ant. interior *a*
n

13. **booster**
 boost [bu:st] *v*
 booster ['bu:stə] *n*

Ex. a booster rocket

14. **jettison** ['dʒetɪsn] *v*
 Ex. to jettison the bomb load

15. **inherent** [ɪn'hیرənt] *a*

Ex. inherent disadvantages of this method

Ex. inherent characteristics
 Inherently [ɪn'hɪərəntli] *adv*

Ex. Analogue computers are not inherently fast.

16. **tip** [tip] *n*
 Ex. the tip of the blade

1) специфический, особый
 особые (специфические) свойства
 2) удельный
 удельный вес
 точно определять, устанавливать
 точно установить спектр скоростей
 1) спецификация
 2) техническое условие, инструкция, указания
 ...работает ли приемник в соответствии с техническими условиями в отношении чувствительности...

конкурировать, соревноваться, состязаться
 конкурировать с поршневым двигателем
 конкурирующий (равный или лучший по сравнению с другим)
 Этот двигатель может конкурировать с турбореактивным по расходу топлива.

конкуренция, соревнование
 соревнование на приз

отношение, коэффициент, степень
 отношение заряда к массе
 коэффициент трансформации
 степень сжатия

внешний, наружный
 внешнее воздействие

внутренний

внешний, наружный
 внешняя баллистика

внешний вид (часть)
 внешний вид двигателя

внутренний

внутренняя часть, внутреннее строение

ускорять, разгонять
 стартовый двигатель, ускоритель, бустер
 стартовая ракета

выбрасывать (за борт), сбрасывать
 сбросить бомбы

присущий, свойственный, неотъемлемый
 недостатки, присущие этому методу

неотъемлемые свойства
 по (своему) существу, по (своей) природе
 Моделирующие счетно-решающие устройства не являются по существу быстродействующими.

конец, кончик
 конец лопасти

17. overall [’ouvərɔ:l] *a*

Ex. overall height

Ex. overall gain

18. unfortunately

fortune [’fɔ:tʃən] *n*

fortunate [’fɔ:tʃnit] *a*

Безличный оборот:

It is fortunate that...

Ex. It is fortunate that flight results are now available and...

unfortunate [ʌn’fɔ:tʃnit] *a*

Безличный оборот:

It is unfortunate that...

Ex. It is unfortunate that most important details have not been considered here.

fortunately [’fɔ:tʃnitli] *adv*

Ex. Fortunately enough measures were taken to...

unfortunately [ʌn’fɔ:tʃnitli] *adv*

Ex. Unfortunately, liquid hydrogen is difficult to handle.

19. tend [tend] *v*

Ex. In the absence of the force of gravity a body will tend to move in a straight line.

tendency [’tendənsi] *n*

20. upper

up *adv, prep*

upper [’ʌpər] *a*

Ex. the upper atmosphere

uppermost [’ʌpərməst] *a*

Ex. the uppermost part of the atmosphere

• upward(s) *adv*

Ex. to move upwards

21. entry

enter [’entə] *v*

Ex. to enter the upper atmosphere

entry [’entrɪ] *n*

Ex. entry of the rocket into the lower atmosphere

re-entry [ri:’entrɪ] *n*

Ex. The possibility of a successful re-entry of the rocket was demonstrated by...

entrance [’entrəns] *n*

22. leave [li:v] (left) *v*

Ex. to leave space for a radio set

Ex. to leave the earth

Ex. This process leaves the missile with a positive charge.

полный, общий

полная высота

общее усиление

счастье, удача (Ср. «фортуна»)

счастливый, удачный

К счастью...

К счастью, в настоящее время мы располагаем данными о результатах полета и... неблагоприятный, неудачный

К сожалению... Плохо, что...

К сожалению, здесь не были учтены очень важные детали.

к счастью

К счастью, были приняты меры, чтобы...

к сожалению

К сожалению, с жидким водородом трудно обращаться.

стремиться (что-л. сделать), иметь тенденцию (к чему-л.)

В условиях отсутствия силы тяжести тело будет стремиться к прямолинейному движению.

тенденция, стремление, наклонность

вверх

верхний

верхние слои атмосферы

самый верхний

самая верхняя часть атмосферы

вверх, по направлению вверх

двигаться вверх

входить, проникать

войти в верхние слои атмосферы

вход, вступление, проникновение

вход ракеты в нижние слои атмосферы

возвращение, вход (в плотные слои атмосферы)

Возможность успешного возвращения ракеты (в плотные слои атмосферы земли) была продемонстрирована...

вход, вступление

1) оставлять

оставить место для радиостанции

оторваться от земли

Этот процесс ведет к тому, что снаряд становится положительно заряженным (Досл. «Этот процесс

Ex. When the gases leave the combustion chamber, they...

23. appreciably
appreciate [ə'pri:fieɪt] *v*
Ex. We appreciate the efforts made by...
* value *v*

Ex. to appreciate a difficulty
Ex. to appreciate the necessity
* understand *v*
appreciable *a*
Ex. an appreciable change
* considerable
appreciably [ə'pri:fəbli] *adv*
Ex. an appreciably larger size

24. available [ə'veɪləbl] *a*
Ex. available information
Ex. available means

Ex. There are several available books dealing with...
to be available

Ex. Aluminium alloys are available in many forms so that...
availability [ə'veɪlə'bɪlɪtɪ] *n*
Ex. the availability of aluminium alloys

25. it follows
follow ['fɒləʊ] *v*
Безличные обороты:
It follows...
Ex. Since electric charge can neither be created nor destroyed, it follows that...
It follows from Smith that...
Ex. It follows from this theory that...

26. item ['aɪtəm] *n*
Ex. Every item on the spaceship has weight which has to be considered.

Ex. Another item to analyse is meteoric dust distribution.

27. suffer ['sʌfə] *v*
Ex. to suffer alteration

оставляет снаряд с положительным зарядом»).

2) уходить, выходить, уезжать
Когда газы выходят из камеры сгорания, онн...

1) (высоко) оценивать
Мы высоко ценим работы, выполненные...
оценивать, ценить

2) понимать, отдавать себе отчет (в чем-л.)
понять трудность
понять необходимость

понять
значительный, заметный, ощущимый
значительное (заметное) из-менение
значительный
значительно, заметно, ощутимо
значительно больший размер

имеющийся, доступный
имеющиеся данные
доступные средства (средства, имеющиеся в распоряжении)
При наличии конструкции there is (are) "available" обычно не переводится
Имеется несколько книг, рассматривающих...

иметься, получаться
Алюминиевые сплавы имеются во многих видах, так что...
наличие, доступность
наличие алюминиевых сплавов

следовать (за чем-л.)

Из этого следует...
Так как электрический заряд нельзя ни создать, ни разрушить, то из этого следует, что...
Из чего-л. следует, что...
Из этой теории следует, что...

1) предмет, деталь
Каждый предмет на межпланетном корабле имеет вес, который необходимо учитывать.

2) пункт, вопрос
Другим вопросом, который нужно проанализировать, является распределение метеоритной пыли.

1) испытывать, претерпевать
испытывать изменения

Ex. to suffer a loss of stability

испытывать потерю устойчи-
вости

Ex. The stability of the airplane
should not suffer if...

2) страдать
Устойчивость самолета не должна
ухудшаться (пострадать), если...

28. significant

sign [saɪn] *n*

signify ['sɪgnfای] *v*

Ex. This work signifies a
new approach to the problem.

• mean *v*

Ex. Such rise of temperature
does not signify anything
for...

• to be of importance

significant ['sɪgnfایkənt] *a*

Ex. significant accomplishments

• important *a*

• considerable *a*

significance ['sɪgnfایkəns] *n*

Ex. the military significance
of rockets

• importance *n*

29. currently

current ['kʌrənt] *a*

Ex. the current theory

• present *a*

currently ['kʌrəntli] *adv*

Ex. aircraft currently in service

30. lead [li:d] (led) *v*

Ex. to lead a search

• guide [gaɪd] *v*

• Ant. follow *v*

Ex. Apart from determining the
structure of the atom, Rutherford's experiments led to a
number of other discoveries.

Ex. This experiment led many
scientists to appreciate...

31. revival

revive [rɪ'veɪv] *v*

revival [rɪ'veɪvəl] *n*

32. propellant

propel [prə'pel] *v*

propellant [prə'peɪlənt] *n*

Ex. liquid propellants

33. saving

save [seɪv] *v*

Ex. to save time

saving ['seɪvɪŋ] *n*

Ex. saving of ten per cent in
cost

испытывать потерю устойчи-
вости

2) страдать

Устойчивость самолета не должна
ухудшаться (пострадать), если...

знак, признак

1) означать (служить признаком)

Эта работа означает новый под-
ход к решению этой проблемы.
означать

2) иметь значение

Такое повышение температуры не
имеет никакого значения для...

иметь значение

значительный, важный
значительные (важные) до-
стижения

важный, значительный

значение, важность
военное значение ракет

значение, важность

современный, текущий

современная теория

современный, настоящий

в настоящее время, в данное время
самолеты, которые в настоящее
время находятся в эксплуатации

1) вести, возглавлять, руководить
руководить поисками
руководить, направлять
следовать, идти (за чем-л. или за
кем-л.)

2) приводить (к чему-л.); заставлять
Опыты Резерфорда привели не
только к определению строения ато-
ма, но и к ряду других открытых.

Этот опыт заставил ученых оце-
нить... (привел к тому, что ученые
оценяли...)

возрождать

возрождение

приводить в движение

ракетное топливо

жидкое топливо (ракеты)

1) спасать

2) экономить

экономить время

экономия

экономия на десять процентов
от стоимости

34. so *adv*

Ex. It is **so** necessary that...

so *cj*

Ex. So, we are able now to send a rocket to...

so as to *cj*

so that *cj*

Ex. Aluminium alloys are available in many forms **so that** the proper material may be selected for any particular application. **so far**

Ex. So far we have dealt with problems affecting... **so long as**

Ex. So long as there is a relative motion between a conductor and a magnetic field... **so far as**

Ex. So far as we know...
and so forth }
and so on }

Ex. Force may be measured in such common units as pounds, kilograms and so on. **or so**

Ex. 500 m. p.h. or so.

35. promise [ˈprɒmɪs] *v*

Ex. to **promise** assistance
promise *n*

promising [ˈprɒmɪsɪŋ] *a*

Ex. a **promising** design

36. impact [ˈɪmpaקט] *n*

Ex. **impact** velocity

Ex. to have an **impact** on the development of aviation

* influence *n*

37. technique [tekˈni:k] *n*

Ex. pulse **technique**

Ex. a number of new experimental **techniques** for controlling...

38. expect [ɪksˈpekt] *v*

* hope *v*

Ex. We must **expect** that...

B конструкции типа «the scientist is supposed to develop»:

1) так, таким образом

2) настолько (усилиительное слово)

Это **настолько** необходимо, что...

3) таким образом, поэтому, итак (стоит в начале предложения, отделено от него запятой и служит для связи с предыдущим высказыванием)

Итак, (поэтому) сейчас мы можем послать ракету на... с тем, чтобы; для того, чтобы; так, чтобы

так что; таким образом; так, чтобы

Имеется много видов алюминиевых сплавов, так что в каждом отдельном случае можно выбрать надлежащий сплав.

до сих пор, пока

До сих пор мы рассматривали проблемы, относящиеся к...

до тех пор, пока; поскольку

До тех пор пока происходит взаимное перемещение магнитного поля и проводника...

поскольку, поскольку

Поскольку нам известно...

и т. д.

Сила может быть измерена в таких обычных единицах, как фунты, килограммы и т. д.

или около этого

500 миль в час или около этого.

обещать, подавать надежды (на что-л.)

обещать помочь

1) обещание

2) перспектива

перспективный, многообещающий
перспективная конструкция

1) удар, столкновение

скорость при ударе

2) влияние, воздействие

оказать влияние на развитие авиации

влияние, воздействие

1) техника

импульсная техника

2) метод, способ

ряд новых экспериментальных методов управления...

1) ожидать, надеяться

надеяться

2) предполагать, думать

Мы должны предполагать, что...

Ex. The pump is expected to run at a very high speed.

Насос, как предполагают, будет работать с очень большой скоростью. (Обратите внимание на то, что стоящий за словом *expected* инфинитив обычно переводится будущим временем «будет работать»)

- believe *v*
- consider *v*
- suppose *v*
- assume *v*
- expectation
[ekspekt'eifn] *n*

38. mix [miks] *v*
mixed [mikst] *a*

Ex. mixed construction
mixture ['mikstʃə] *n*

40. scale [skeil] *n*
Ex. a scale to measure degrees of temperature

Ex. a full-scale model

полагать
полагать, считать
предполагать
предполагать
1) ожидание
2) вероятность
смешивать
смешанный
смешанная конструкция
смесь (Ср. «микстура»)
1) шкала
шкала для измерения температуры
2) масштаб
модель в натуральную величину («полного масштаба»)

Урок пятый

1. star [sta:] *n*
2. matter ['mætə] *n*

Ex. This is a matter of great interest.
subject matter *n*

звезда
1) материя, вещество
2) вопрос, дело
Это вопрос, представляющий большой интерес.
основной вопрос, сущность, содержание

Основной вопрос этой статьи состоит в...

фактически, на самом деле

Фактически силы трения существуют независимо от того, движется ли тело в жидкости или в газе.

независимо от того (как, когда, какой, почему и т. д.)

Электрические возмущения, как бы слабы они не были (независимо от того, насколько они слабы), создают радиоволны, которые...

Независимо от того, какие изменения были внесены в эту конструкцию, она...

Ex. The subject matter of the article is...
as a matter of fact

Ex. As a matter of fact, frictional forces exist whether bodies move within fluids, liquids or gases.
no matter (how, when, what...)

Ex. Electrical disturbances, no matter how weak, produce radio waves, which...

Ex. No matter what modifications were introduced in this design, it is...

3. acquirement
acquire [ə'kwaɪə] *v*
Ex. to acquire knowledge

Ex. to acquire the speed of sound

- attain *v*
- obtain *v*
- receive *v*
- acquirement
[ə'kwaɪəmənt] *n*

1) приобретать
принимать знания
2) достигать
достичь скорости звука

достигать
достигать, добиваться
получать, достигать
приобретение

Ex. acquisition of knowledge

4. order ['ɔ:də] *n*
Ex. to arrange elements in the order of atomic weights

Ex. to put in order

- * in order that *c/*
- * in order to *c/* }

5. immense [im'mens] *a*
Ex. the immense power of the modern rocket

- * great *a*
- * tremendous *a*
- * enormous *a*

6. number ['nʌmbə] *n*
Ex. the number of experiments

Ex. a number of experiments

Ex. the atomic number of the element

number *v*

- * count *v*

7. fine [faɪn] *a*
Ex. fine weather

Ex. a fine line

Ex. fine droplets

8. intensity

- intense [ɪn'tens] *a*
- Ex. an intense source of emission
- Intensity [ɪn'tensɪtɪ] *n*
- Ex. intensity of emission
- intensify [ɪn'tensɪfaɪ] *v*
- Ex. to intensify the process of burning
- Intensive [ɪn'tensɪv] *a*
- Ex. intensive research

9. vapourize

- vapour (vapor) ['veɪpə] *n*
- Ex. Vapour is any substance in the gaseous condition.
- * steam *n*
- vapourize ['veɪpəraɪz] *v*

Ex. to vapourize a substance

vapourization
[veɪpəraɪ'zeɪʃn] *n*

10. luminous ['lu:minəs] *a*
Ex. a luminous body

luminosity
[lu:min'osɪtɪ] *n*

11. yield [jɪ:ld] *v*
Ex. These processes yield enough energy to...

пробретение знаний

1) порядок, последовательность расположить элементы в порядке атомных весов

2) порядок, исправность приводить в порядок, исправлять

для того, чтобы; с тем, чтобы

огромный, громадный

огромная сила современной ракеты

большой; великий

огромный, колossalный

огромный

1) количество, число

количество (число) опытов

2) ряд (с неопределенным артиклем)

ряд опытов

3) номер

атомный номер элемента

насчитывать, составлять

считать, подсчитывать

1) отличный, прекрасный

прекрасная погода

2) тонкий

тонкая линия

3) мелкий, тонконизмельченный

мелкие капельки

интенсивный, сильный, напряженный

интенсивный (сильный) источник излучения

интенсивность, сила, напряженность

интенсивность излучения

усиливать

усилить процесс горения

интенсивный

интенсивные исследования

пар, пары, газообразное состояние

Пар — это любое вещество в газообразном состоянии.

пар

превращать в пар, приводить в газообразное состояние, испарять(ся)

привести вещество в газообразное состояние

парообразование, испарение

светящийся, раскаленный

светящееся тело

свечение

давать, производить

Эти процессы дают (производят) достаточно энергии для того, чтобы...

- * give *v*
- * produce *v*

12. **glow** [glou] *v*

Ex. **glowing** discharge
glow *n*

Ex. **glow** [amp]

13. **exhibit** [ig'zibit] *v*

Ex. to **exhibit** an increase of resistance
* show *v*

Ex. to **exhibit** engines

exhibition [eks'i'bɪʃn] *n*

Ex. The 1958 Brussels **exhibition**

14. **but**

but [bʌt] *c/s*
→ but *prp*

Ex. All experiments proved successful **but** the last one.

but *adv*

Ex. The investigations have **but** begun.
but for

Ex. This engine could be widely used **but for** extremely high ratio of weight to power output.

cannot but

Ex. We **cannot but** accept this proposal.

15. **occur** [ə'ke:] *v*

Ex. Wide temperature changes **occur** in the atmosphere.

Ex. In some instances gasoline vapour explosions **occur**.

- * take place *v*
- * happen *v*

Ex. Uranium **occurs** in three isotopic forms.

- * meet *v*
- occurrence [ə'kʌrəns] *n*

Ex. Sometimes we find the **occurrence** of a sudden increase in the intensity of the cosmic radiation.

16. **background** ['bækgraund] *n*

Ex. against the **background** of the dark sky

Ex. the scientific **background** of space travel

давать

производить

накаляться докрасна (дobel'a), светиться (как при накаливании)

светящийся разряд

свечение, накаленность

лампа и накаливания

- 1) проявлять, показывать (какое-л. свойство)
- 2) проявлять (показывать) увеличение сопротивления
- показывать
- 2) выставлять, экспонировать
- выставить двигатели (показать двигатель на выставке)
- выставка
- Брюссельская выставка 1958 г.

а, но, однако, тем не менее кроме, за исключением

Все опыты оказались удачными, кроме (за исключением) последнего.

только

Исследования только начались.

если бы не

Этот двигатель можно было бы широко использовать, если бы у него не был слишком высокий удельный вес.

не может не

Мы не можем не принять этого предложения.

- 1) происходить, иметь место, случаться
- В атмосфере происходят резкие колебания температуры.
- В некоторых случаях имеют место взрывы паров бензина.
- иметь место, происходить
- случаться, происходить
- 2) встречаться
- Уран встречается в виде трех изотопов.
- встречаться
- случай, происшествие
- Иногда мы сталкиваемся со случаем внезапного увеличения космического излучения.

- 1) фон
на фоне темного неба
- 2) основные положения, основы
научные основы межпланетного полета
- 3) подготовка (усвоение основ)

Ex. to have an adequate background in physics
 17. Interpose
 pose [pouz] *v*
 Ex. to pose a difficult design problem
 interpose [intə'pouz] *v*
 Ex. to interpose a screen grid between the cathode and the plate

18. iron ['aɪən] *n*
 19. cloud [klaud] *n*
 Ex. a cloud of smoke
 cloudless ['klaudlɪs] *a*
 Ex. cloudless sky
 20. in (with) respect to
 respect [rɪ'pekt] *n*
 in (with) respect to (of) (smth)
 Ex. in respect to this type of radiation we can say that...
 Ex. Acceleration is the rate of change of velocity with respect to time.
 21. surround [sə'raʊnd] *v*
 Ex. The earth is surrounded by a dense atmosphere.
 surroundings [sə'raʊndɪŋz] *n pl*
 Ex. In this case fusion processes yield enough energy to account for the losses to the surroundings.
 22. outer
 out [aut] *a*
 outer ['autə] *a*
 Ex. outer coverings
 outermost ['autəmoust]
 Ex. Neptune is the outermost of the four giant planets of the solar system.
 23. conclusively
 conclude [kən'klu:d] *v*
 Ex. We must conclude that this engine was an advance over the piston type.

- determine *v*
 conclusion [kən'klu:ʒn] *n*
 Ex. to form conclusions from experience
 conclusive [kən'klu:siv] *a*
 Ex. a conclusive phase
- Ex. a conclusive evidence
 conclusively [kən'klu:sivli] *adv*

иметь достаточную подготовку по физике

ставить, предлагать (вопросы, задачу)
 поставить трудную конструктивную задачу

вставлять, вводить (ставить между)
 вставить (ввести) экранирующую сетку между катодом и анодом (поставить экранирующую сетку между катодом и анодом)

железо

облако, туча
 облако дыма

безоблачный
 безоблачное небо

отношение, касательство
 в отношении, что касается (чего-л.)
 В отношении этого типа излучения мы можем сказать, что...
 Ускорение — это изменение векторной скорости по времени.

окружать
 Земля окружена плотной атмосферой.

окружающие условия, окружающая среда
 В этом случае процессы синтеза дают достаточно энергии, чтобы скомпенсировать потери в окружающей среде.

внешний
 (сравнительная степень от out) внешний, наружный
 виешнне покрытия
 (превосходная степень от out) самый дальний (от центра)
 Нептун — самая удаленная из четырех планет-гигантов солнечной системы.

заключать, делать вывод
 Мы должны сделать вывод, что этот тип двигателя представляет собой шаг вперед по сравнению с поршневым двигателем,
 определять, решать
 заключение, вывод
 делать выводы на основании опыта

1) заключительный
 заключительная фаза

2) убедительный, окончательный
 убедительное доказательство
 убедительно; окончательно

Ex. to prove conclusively

24. fairly ['feəli] *adv*

Ex. a fairly large power plant

* rather *adv*

25. abundance [ə'bʌndəns] *n*

Ex. the abundance of iron in the Sun

Ex. the abundance of each element

abundant [ə'bʌndənt] *a*

Ex. ores, abundant in iron

abundantly [ə'bʌndəntli] *adv*

Ex. Aluminium alloys are abundantly used in industry.

26. double ['dʌbl] *v*

Ex. to double the length of the wire

double *a*

Ex. double controls

27. moreover [mɔ: 'raʊə] *cj*

Ex. An airplane has not only to be able to raise itself from the ground but also be controllable; moreover it should be stable.

28. identify [aɪ'dentɪfaɪ] *v*

Ex. to identify an airplane identification

[aɪ'dentɪfɪ'keɪʃn] *n*

Ex. target identification

Ex. The identification of such a strong source with such a distant object...

29. draw [drɔ:] (drew, drawn) *v*

Ex. to draw a train

Ex. to draw a plan

to draw conclusions

drawback ['drɔ:bæk] *n*

Ex. The large amounts of power required constituted a serious drawback to the development of multtube receivers.

30. estimate ['estɪmeɪt] *v*

Ex. to estimate the practical value of an invention

Ex. to estimate the speed of the future airplane

убедительно (окончательно)

доказать достаточно (в достаточной степени),

довольно

достаточно большая силовая установка
довольно (до некоторой степени)

1) изобилие, большое количество
большое количество железа на Солнце

2) распространенность
распространенность каждого элемента

1) обильный, богатый (чел-а.)
руды, богатые железом

2) распространенный
обильно, широко

Алюминиевые сплавы широко (в больших количествах) применяются в промышленности.

удванивать, увеличивать в два раза
удвоить длину провода

двойной

двойное управление

более того, к тому же, кроме того

Самолет должен не только подняться с земли, но он должен быть и управляемым, и, кроме того (к тому же), устойчивым.

опознавать; определять; различать;
отождествлять

• опознать самолет

1) опознавание

2) отождествление

опознавание цели

Отождествление такого сильного источника (излучения) со столь удаленным объектом...

1) тащить, тянуть

тянуть железнодорожный состав

2) чертить, рисовать; составлять (план)

составить план

3) выводить, делать (вывод)

делать выводы

недостаток, задержка, погрешность

Потребность в больших мощностях задерживала создание много-ламповых приемников (Досл. «была серьезной задержкой в создании...»).

оценивать, понимать значение (чего-л.); вычислять, определять (приблизительно)

определить практическую ценность изобретения

вычислить (приблизительно)
скорость будущего самолета

В конструкции типа «the scientist is supposed to develop»:

Ex. Pluto's time of rotation is estimated to be $6\frac{1}{2}$ days.

* value *v*

* determine *v*
estimate [estimit] *n*

Ex. estimates of the probability of vehicle skin penetration by meteorites underestimate

[ʌndə'restimate] *v*

Ex. to underestimate a difficulty

overestimate

[oʊvə'restimate] *v*

31. throughout [θruː'auθ] *adv*

Ex. throughout the 19th century

Ex. throughout the world

* all over
throughout *adv*

Ex. The airflow in this case remains steady throughout.

32. revelation

reveal [ri'vel] *v*

Ex. to reveal traces of hydrogen

Ex. to reveal information

* discover *v*

* disclose *v*

* show *v*

→ revelation [,revi'leʃn] *n*

* discovery *n*

33. familiar [fə'miljə] *a*

Ex. a familiar method

* well-known *a*
to be familiar (with smth)

Ex. Everyone is now familiar with the principles on which radar works.

to become familiar (with smth)

Ex. This permits us to become familiar with the methods of science before...

34. rest [rest] *n*

Ex. the rest of elements

35. turn out ['tə:n 'aut] *v*

Ex. He turned out an excellent designer.

В конструкции типа «appears to differ»:

Вычислено, что период обращения планеты Плутон составляет $6\frac{1}{2}$ дня.

ценить

определять, устанавливать
оценка, определение

определение возможности
пробивания метеоритами обшивки
межпланетного корабля
недооценивать

недооценивать трудность

переоценивать

через, по всему, на протяжении
и на протяжении всего 19 столетия

во всем мире

повсюду

повсюду, на всем протяжении, от начала до конца

В этом случае воздушный поток остается устойчивым на всем протяжении.

обнаруживать, раскрывать, разоблачать, показывать

обнаружить следы водорода

опубликовать данные
открывать, обнаруживать, раскрывать

раскрывать, обнаруживать

показывать

открытие, обнаружение

открытие

хорошо знакомый, известный

хорошо известный метод

известный

знать (что-л.), быть знакомым
(с чем-л.)

Сейчас все знают принципы, на которых работает радаролокатор.

ознакомиться (с чем-л.)

Это дает нам возможность познакомиться с научными методами, прежде чем...

1) отдых, покой

2) остаток, оставшееся (с определенным артиклем)

остальные элементы

оказываться

Он оказался прекрасным конструктором.

Ex. These phenomena turn out to be produced by the flow of electric current.

Безличный оборот:

It turns out that...

Ex. It turns out that this field of science is as important for aviation as thermodynamics.

Эти явления, оказываются, создаются прохождением электрического тока.

Оказывается..

Оказывается, эта область науки так же важна для авиации, как и термодинамика.

Урок шестой

1. fit [fit] v

Ex. theories which fit the facts

1) соответствовать, годиться теории, которые соответствуют фактам

2) оборудовать, снабжать (чем-л.) оборудовать (снабдить) радиоустановкой
снабжать, оборудовать
снабжать

Ex. to fit with a radio set

- equip v
- furnish v

2. be in a position

position [pə'zɪʃn] n

→ be in a position (to do smth)

положение
быть в состоянии (сделать что-л.)

3. keep in mind

mind [maɪnd] n

keep [ki:p] v

→ keep in mind

ум, разум
держать, сохранять
помнить (о чем-л.), учтывать (что-л.) (Досл. «держать в уме»)
Конструктор должен всегда помнить о цели, для которой...

Ex. The designer must always keep in mind the purpose for which...

bear in mind

4. medium [ˈmi:dɪəm] n (pl -s, -ia)

Ex. transparent medium

Ex. through the medium (of smth)

• means n

medium a

Ex. a medium bomber

помнить (о чем-л.)

1) среда
прозрачная среда
2) средство, способ
посредством (чего-л.)

5. band [bænd] n

Ex. frequency band

средство

средний

средний бомбардировщик
полоса, диапазон
полоса частот

6. responsible [rɪ'spɒnsəbl] a

Ex. a man responsible for this work

1) ответственный (за что-л.)
человек, ответственный за эту работу
2) обуславливающий, создающий
радиация, обуславливающая
создание этого слова
обуславливать, вызывать (что-л.), являться причиной

Ex. radiation responsible for the creation of this layer
be responsible (for smth)

Определенные физические процессы обуславливают наличие космических лучей.

7. be referred to

refer [rɪ'fə:] v

→ be referred to (as smth)

1) относиться (к чему-л.)
2) ссылаться (на что-л.)
называться, именоваться, обозначаться

Ex. The period in which we live is frequently referred to as the "air age".

Период, в котором мы живем, часто называют «веком авиации».

reference [‘refrəns] n

make reference (to smth)

Ex. It is possible to make reference to a number of papers dealing with...

* mention *n*

make mention (of smth)

Пассивные формы:

reference is made (to smth)

Ex. In the introduction reference is made to the problem of...

mention is made (of smth)

Ex. In this chapter mention is made of disturbances which...

8. **sharply**

sharp [ʃɑ:p] a

Ex. a sharp edge

Ex. a sharp line of demarcation

→ **sharply [‘ʃɑ:pli] adv**

Ex. a sharply defined region

9. **region [‘ri:dʒən] n**

Ex. The regions from which the lines of force arise are called magnetic poles.

10. **decided**

decide [di’saɪd] v

→ **decided [di’saɪdɪd] a**

Ex. a decided advantage

11. **materially**

material [mə’tiəriəl] a

Ex. material to the accomplishment of the research

→ **materially [mə’tiəriəli] adv**

Ex. to differ materially

* considerably *adv*

12. **make use (of smth)**

use [ju:s] n

→ **make use (of smth)**

Ex. to make use of some property

Пассивные формы:

is made use (of smth) }

use is made (of smth) }

Ex. This phenomenon is made use of in...

Ex. In this book use is made of the meter-kilogram-second system.

1) ссылка

2) упоминание

ссыльаться (на что-л.), упоминать (что-л.)

Можно сослаться на ряд статей, рассматривающих...

упоминание, ссылка

упоминать (что-л.)

делается ссылка (на что-л.), упоминается (что-л.)

В предисловии упоминается проблема...

упоминается (что-л.)

В этой главе упоминаются помехи, которые...

1) острый; заостренный
острый край

2) определенный, отчетливый, резкий
отчетливая разграничительная линия

1) остро

2) определенно, отчетливо, резко
резко очерченная область, район

Области, откуда идут магнитные силовые линии, называются магнитными полюсами.

решать (что-л.)

определенный, явный («решенный»)
определенное (явное) преимущество

1) материальный

2) существенный, важный
существенный для завершения исследования

существенно, значительно
существенно (значительно)
отличаться
значительно

использование, применение

использовать, применять (что-л.)
(Досл. «сделать применение» чего-л.)

использовать (применить) какое-то свойство (материала)

используется (что-л.)

Это явление используется в...

В этой книге используется система м/кг/сек

13. **emit** [ɪ'mɪt] *v*
 Ex. to emit gamma ray.
 emission [ɪ'miʃn] *n*
 emissive [ɪ'mɪsɪv] *a*

14. **brief** [bri:f] *a*
 Ex. a brief speech
 briefly ['bri:fli] *adv*
 in brief }

Ex. In brief, the task of a transmitter is to generate and radiate energy in wave form at radio frequency.

15. **idle** ['aɪdl] *a*
 Ex. idle time
 Ex. idle speed

16. **pick up**
 pick [pɪk] *v*
 Ex. to pick one's way
 pick up ['pɪk 'ʌp] *v*

Ex. to pick up information
 Ex. to pick up remote signals

17. **inch** [ɪnʃ] *n*

18. **be bound** (to do smth)
 bound [baʊnd] *a*
 → be bound (to do smth)

Ex. Space rockets are bound to assist in advancing our knowledge of...

19. **straight** [streɪt] *a*
 Ex. a straight line

20. **horizon** [hə'raɪzn] *n*
 horizontal [hɔrɪ'zəntl] *a*

21. **half** [ha:f] *n* (*pl.* halves)
 Ex. half of the work

22. **total** ['tətəl] *a*
 Ex. the total amount
 Ex. total emission
 totally ['tətəli] *adv*
 Безличные обороты:

23. **It takes...** (to do smth)

Ex. It takes about 26^{22} protons to make up a pound of mass.
 It takes smb (smth)... (to do smth)
 Ex. It took nature millions of years to make coal.
 It requires... (to do smth)

испускать, излучать
 испускать гамма-лучи
 излучение, эмиссия
 излучающий

краткий
 краткая речь
 вкратце, коротко говоря, в некоторых словах (суммирование предыдущего высказывания)

Короче говоря, задача передатчика состоит в том, чтобы генерировать и излучать энергию в форме волны на радиочастоте.

незанятый, бездействующий
 простой, вынужденная установка (Досл. «незанятое время»)
 холостой ход (Досл. «бездействующая скорость»)

выбирать
 выбрать путь
 подбирать, собирать, принимать (сигналы)
 собирать сведения
 принимать дальние сигналы
 дюйм (мера длины, равная 2,54 см)

обязательный, непременный
 (Выражает обязательность действия, обозначаемого инфинитивом следующего глагола: должен, вынужден делать что-л.) обязательно, непременно (сделать что-л.)

Космические ракеты должны помочь расширить наши знания о...

прямой
 прямая линия

горизонт
 горизонтальный

половина
 половина работы
 общий (Ср. «тотальный»), полный
 общее количество
 полная эмиссия
 полностью, совершено

Требуется... (для того, чтобы сделать что-л.)
 Требуется 26^{22} протонов, чтобы образовать один фунт массы.

Кому-л. (чему-л.) требуется... (для того, чтобы сделать что-л.)
 Природе потребовалось миллионы лет для того, чтобы создать уголь.

Требуется... (для того, чтобы сделать что-л.)

Ex. It requires an hour to carry out this experiment.

It seems that...

Ex. It seems possible that the results...

it happens that...

Ex. It happens that the atom loses one of its electrons when...

- it appears that...
- it turns out that...
- it follows...
- it follows from smth...

24. duration [djuə'reiʃn] n
Ex. duration of flight

durable ['djuərəbl] a

Ex. durable materials

Ex. durable peace

durability [djuərə'biliti] n

Ex. the durability of this plastics

- during ['djuərɪŋ] prep

25. bring into use

Ex. Radio was brought into use to communicate with ships at sea

Приводимые ниже словосочетания такого же типа (глаголы to bring, to put, to set + существительное с предлогом into) обозначают «приводить в какое-то состояние». На русский язык они переводятся соответствующим словосочетанием или глаголом.

to bring into action

to put into operation

to put into use

to put into practice

to set in (into) motion

26. go into particulars

particulars [pə'tɪkjʊləz] n pl

→ go into particulars

Ex. The writer did not go into particulars as...

Приводимые ниже словосочетания такого же типа (глаголы to go, to come + существительное с предлогом into) обозначают «приходить в какое-то состояние». На русский язык они переводятся соответствующим словосочетанием или глаголом.

go into play

play [pleɪ] n

→ to go into play

to go into service

to come into use

to come into action

Требуется час для того, чтобы провести этот опыт.

Кажется, что...

Кажется возможным, что результаты...

Случается, что...

Случается, что атом теряет один из своих электронов, когда...

оказывается...

оказывается...

из этого следует, что...

из чего-то следует, что...

продолжительность, длительность

продолжительность полета
прочный, долговременный

прочные материалы

прочный (длительный) мир

прочность, выносливость

прочность этой пластмассы

в течение, в продолжение

начать использовать, применять
(Досл. «привести к использованию»)

Радио начали применять
для связи с кораблями в море.

приводить в действие

вводить в действие

вводить в действие, начинать применять (использовать)

вводить в действие, осуществлять

приводить в движение

подробности, детали

вдаваться (входить) в подробности

Автор не вдавался в подробности, так как...

действие, деятельность

вступать в действие

вступать в действие (в строй)

начинать применяться, находить применение

вступать в действие

to come into play	вступать в действие
Ex. A new radar recently went into service.	Недавно вступил в действие новый радиолокатор.
to come into being	существование
being ['bi:ɪŋ] n	возникать, появляться
to come into being	
27. as follows	
follow ['fɒləʊ] v	следовать (за чем-л.)
as follows	следующим образом
Ex. This phenomenon may be explained as follows.	Это явление можно объяснить следующим образом.
28. distant ['dɪstənt] a	далекий, отдаленный
Ex. a distant object	отдаленный объект
* remote a	отдаленный, дистанционный

Дополнительный список словосочетаний по теме урока

Словосочетания глагола «to be+существительное с предлогом of»:

be of no account	значение, важность
account n	не иметь значения
be of no account	
be of (some) consequence	следствие, результат
consequence ['kɒnsɪkwəns] n	иметь (некоторое) значение (Досл. «иметь некоторое следствие»)
be of (some) consequence	Пространство имеет три измерения, факт, который имеет большое значение при описании движения физических тел.
Ex. Space has three dimensions, a fact which is of great consequence in describing the motions of physical objects.	представлять интерес, быть интересным
* be of interest	иметь большое значение, быть важным
* be of importance	представлять ценность, быть ценным
* be of value	иметь значение
* be of significance	

Словосочетания «глагол+существительное»:

give consideration	рассматривать, учтывать (что-л.)
Ex. It is important to give consideration to the problem of...	Важно рассмотреть проблему... (уделить внимание проблеме...)
Пассивная форма:	
consideration is given	рассматривается (что-л.), учитывается (что-л.)
Ex. Careful consideration is also given to the method of...	Тщательно рассматривается также метод... (Большое внимание уделяется также методу...)
* take into consideration	принимать во внимание
* take into account	
place emphasis	
emphasis ['emfəsɪs] n	
place emphasis	
Ex. The author places emphasis upon the fact that...	ударение, упор подчеркивать, выделять (что-то), придавать особое значение (чему-л.) Автор подчеркивает тот факт (придает особое значение тому факту), что...

*Пассивная форма:
emphasis is placed*

Ex. As great emphasis was placed on the development of high energy rocket propellants...

Словосочетания «глагол + прилагательное»:

hold true
hold [hould] v
true [tru:] a
hold true

Ex. These data hold true for many...

feel certain (sure)
feel [fi:l] v
sure [suə] a
certain ['sə:tən] a
feel certain (sure) (about smth)

Ex. The scientist felt certain that...

make certain (sure)

Ex. The designer had to make certain that...

подчеркивается, придается особое значение

Так как большое значение придавалось созданию высокоэнергетических ракетных топлив...

держать
правильный
являться, справедливым (правильным)

Эти данные являются справедливыми для многих...

чувствовать

уверенный

быть уверененным (в чем-л.) (Досл. «чувствовать себя уверенными» в чем-л.)

Ученый был уверен, что...

удостовериться, убедиться

Конструктор должен был удостовериться в том, что...

Урок седьмой

1. feed [fi:d] (fed) v

Ex. to feed the reactor with natural uranium

* supply v

* provide v

feed [fi:d] n

Ex. feed system

* supply [sə'plai] n

Ex. Fuel supply will last for two months.

2. raw [rə:] a

Ex. raw materials

3. slight [slɪt] a

Ex. slight deflection

4. schedule ['fedʒu:l] n

Ex. schedule work

5. process [prə'ses] v

Ex. to process numerical data

process ['prəusəs] n

processing [prə'sesɪŋ] n

Ex. data processing

6. input ['input] n

Ex. data input

Ex. input power

* Ant. output n

питать, подавать
подавать в реактор натуральный уран

питать, снабжать

обеспечивать, снабжать

питание, подача

система питания

1) снабжение, питание

2) запас, некоторое количество

Зapasа топлива хватит на два месяца.

сырой, необработанный

сырые материалы

легкий, слабый, незначительный

незначительное отклонение

расписание, график, план

работа по графику (плану)

обрабатывать (подвергать что-л. техническому процессу)

обрабатывать цифровые данные

процесс

обработка

обработка данных

1) ввод, подвод

2) вводимое количество

ввод данных

мощность на входе

выход, отдача, отдаваемая мощность

- **extensive**
extent [ɪk'stent] *n*
Ex. the extent of the atmosphere
to a certain extent
Ex. A glider was, to a certain extent, controllable.
 ▶ **extensive** [ɪk'stensɪv] *a*
Ex. extensive plans
extend *v*
Ex. to extend to the upper atmosphere
extended [ɪk'stendɪd] *a*
Ex. extended period of time
extensively
 [ɪk'stensɪvli] *adv*
Ex. Amplifiers are extensively used in radio transmitters.
 ▶ **prior** ['praɪər] *a*
Ex. prior to processing
prior to *prep*
Ex. Prior to 1943 heavy water was produced by electrolysis of water.
priority [praɪ'ɔriti] *n*
- **skilled**
skill [skil] *n*
Ex. the skill of the engineer
 ▶ **skilled** [skild] *a*
Ex. a skilled worker
- **labour** ['leɪbər] *n*
 ▶ **up to** *prep*
Ex. flights at speeds up to Mach 3 down to prp
Ex. operation at temperatures down to -5°C
- **experience** [ɪks'pɪəriəns] *n*
Ex. After many years' experience in training aviation mechanics the author has found... experience *v*
Ex. to experience lack of oxygen
 • **undergo** (**underwent, undergone**) *v*
experienced *a*
Ex. an experienced person
 ▶ **devise**
device [di'veɪs] *n*
 ▶ **devise** [di'veaɪz] *v*
Ex. to devise an engine
 • **invent** *v*
- 1) протяженность, размер
 протяженность атмосферы
 2) степень, мера
 в известной степени, до некоторой степени
 Планер был до некоторой степени управляем.
 обширный, большой (по размерам, по протяженности)
 обширные планы
 простираясь, распространяться
 простираясь до верхних слоев атмосферы
 длительный, продолжительный
 длительный период времени
 широко, много, подробно
- Усилители широко используются в радиопередатчиках.
 предшествующий, предварительный
 предшествующая обработка до
 До 1943 года тяжелая вода производилась путем электролиза воды.
- приоритет, первенство, преимущество («первое место»)
- умение, мастерство, квалификация
 квалификация инженера
 квалифицированный
 квалифицированный работник
 труд, работа
 до, вплоть до (указывает на движение вверх)
 полеты на скоростях до 3М
- до, вплоть до (указывает на движение вниз)
 работа при температуре до -5°C
- (накопленный) опыт, практика
 На основании многолетнего опыта работы по обучению авиационных механиков автор пришел к выводу... испытывать, ощущать
 испытывать недостаток кислорода
 испытывать, подвергаться (чему-л.)
- опытный, знающий, квалифицированный
 опытный (знаящий) человек
- приспособление, прибор, устройство
 изобретать, разрабатывать
 изобрести двигатель
 изобретать

14. **nor** [nɔ:] *cj*
neither { 'naɪðə] *cj* }

Ex. The choice of fuels for conventional power plants is not wide, nor is the variation of performance great.

• **neither a**

• *** neither ... nor cj**

15. **sequence** ['si:kwəns] *n*

Ex. sequence of operation

subsequent

['sʌbskwənt] *a*

Ex. Any space travel must provide means for a subsequent return to the Earth.

subsequently

['sʌbskwəntli] *adv*

Ex. Subsequently the problems will be solved.

16. **add** [æd] *v*

Ex. to add new information to the data already available

Ex. to add 10 to 20

Ex. This information adds greatly to our knowledge of space.

addition [ə'dɪʃn] *n*

Ex. a useful addition to the paper

Ex. vector addition

In addition to

Ex. In addition to registering corpuscular radiation...

In addition

Ex. Radio wind balloons provide wind information. In addition, such balloons carry instruments for measuring pressure, temperature and humidity.

additional [ə'dɪʃənl] *a*

Ex. an additional load

17. **along with** (smth) *prep*

Ex. Along with a list of possible attractive features of reactors, there are, unfortunately...

18. **modify** ['mɒdɪfɪ] *v*

modification [mɒdɪfɪ'keɪʃn] *n*

также ... не (перед глаголом)

Выбор различных видов топлива для обычных двигателей не велик, также и велико различие в характеристиках двигателей.

никакой (ни один из двух; ни тот ни другой)

ни ... ни (ни то ... ни другое)
последовательность; порядок; ряд
последовательность операций
последующий

При любом путешествии в космос нужно предусмотреть средства для последующего возвращения на Землю.

впоследствии, потом, позже

В **впоследствии** (позже) эти проблемы будут разрешены.

1) добавлять, дополнять, присоединять, прибавлять
дополинить имеющиеся данные новыми сведениями

2) складывать (числа, величины)
к 10 прибавить 20 (Досл. «сложить»)

3) увеличивать
Эти сведения значительно увеличивают наши знания о космосе.

1) дополнение, добавление
полезное дополнение к статье

2) сложение (матем.)

сложение векторов

кроме {чего-л.), в дополнение (к чем-л.)

Кроме регистрации корпускулярных излучений...

в дополнение к сказанному, помимо того, кроме того (средство связи, стоит в начале предложения и обычно отделено от него запятой)

Радионоиды дают сведения о силе и направлении ветра. Кроме того, на них имеются приборы для измерения давления, температуры и влажности.

дополнительный

дополнительная нагрузка
наряду с (чем-л.), вместе с (чем-л.)

Наряду со многими положительными особенностями реакторов, к сожалению, имеются...

видеозменять, модифицировать, вносить изменения
изменение, модификация

19. **recall**
 ↗ **call v**
recall [rɪ'kɔ:l] v
 Ex. to **recall** the necessary data
 звать, призывать; называть
 вспоминать, напоминать
 вспоминать необходимые данные

20. **virtually**
virtue [və:tju:] n
 Ex. The device has the **virtue** of being adjustable.
 Ex. coolant of great **virtue**
 by (in) **virtue of prp**
 Ex. Water in a wave obtains kinetic energy by **virtue of** its motion.
virtual ['və:tjuəl] a
 Ex. a **virtual** voltage
 → **virtually adv**
 Ex. The space station would **virtually** be a scientific laboratory.
 1) достоинство, преимущество
 Это устройство имеет то достоинство, что его можно регулировать.
 2) сила, действие
 хороший охладитель (охладитель большой силы)
 в силу, вследствие (чего-л.), благодаря (чему-л.)
 Вода волна приобретает кинетическую энергию вследствие движения.
 действительный, действующий, фактический
 действующая величина напряжения
 фактически, в сущности
 Космическая станция была бы в сущности научной лабораторией.

21. **store** [stɔ:] v
 Ex. to **store** information
store n
 Ex. **store** of useful data
storage ['stɔ:ridʒ] n
 Ex. energy **storage**
 22. **not until prp**
 Ex. Not until the end of the century...
 not until *cj*
 Ex. Not until the program is prepared...
 23. **to be more precise**
 ↗ **precise [pri'saɪz] a**
to be more precise
 Ex. Electricity is a condition or state of matter or, to be more precise, the electric current is a flow of electrons or ions. to be more exact
 24. **comprise** [kəm'praɪz] v
 Ex. The book **comprises** detailed information on...
 * include v
 25. **express** [iks'pres] v
 Ex. to **express** an opinion
expression [iks'preʃn] n
 запасать, накапливать, хранить и акапливать (хранить) информацию
 запас запас полезных сведений (данных)
 накопление, хранение накопление энергии
 только в, только после (далее идет существительное или числительное, обозначающее время)
 Только в конце столетия...
 только когда
 Только когда программа подготовлена...
 точный более точно, точнее (дополнительное пояснение к ранее высказанной мысли)
 Электричество есть некоторое состояние материи или, более точно, электрический ток есть поток электроионов или ионов.
 более точно, точнее
 состоять из, включать, охватывать Книга включает подробные сведения о...
 включать, содержать в себе выражать (ся)
 выражать мнение выражение

Ex. These algebraic expressions represent the relationship between input and output.

26. subject [ˈsʌbdʒɪkt] a

Ex. The altimeter is subject to errors due to...

subject [səbˈdʒekt] v
to be subjected

Ex. When protons are subjected to high electric potential — they move.

subject [ˈsʌbdʒɪkt] n
subject matter

27. avoid [əˈvɔɪd] v

Ex. to avoid making errors
* escape v

avoidable [əˈvɔɪdəbəl] a

Ex. With this arrangement the errors seem completely avoidable.

Ant. unavoidable
[ʌnəˈvɔɪdəbəl] a

Ex. unavoidable difficulties

28. This (such) is the case

Ex. The lower limit of the cosmic ray speeds is the result of the action of the magnetic field of the Sun. If this is the case then the lower limit of the cosmic ray energies...

As is the case

Ex. As is usually the case, there are several types of systems that may...

This is not the case

Ex. Venus was formerly believed to be slightly larger than the Earth, but this is not the case.

29. once [wʌns] adv

Ex. We saw him once in his laboratory.

once more adv

Ex. to check the work once more

at once adv

Ex. The computer gave us at once all the necessary information.

once adv

Эти алгебраические выражения представляют соотношения между входными и выходными сигналами.

подверженный, испытывающий действие (чего-л.)

Высотомер может дать неправильные показания вследствие... (Досл. «Высотомер подвержен ошибкам вследствие...»)

подвергать (действию чего-л.), испытывать (что-л.)

Когда протоны подвергаются действию (испытывают действие) высокого электрического потенциала, они движутся.

тема, предмет, вопрос
сущность, основное содержание, тема

избегать, уклоняться (от чего-л.)

избегать ошибок

избегать (опасности); вырываться, освобождаться

то, чего можно избежать

С применением этого устройства можно, по-видимому, полностью избежать ошибок.

неизбежный

неизбежные трудности

Это имеет место, это происходит, это так

Нижний предел скорости космических лучей определяется действием магнитного поля Солнца. Если это так, тогда нижний предел энергии космических лучей...

Как это имеет место (происходит, бывает)

Как обычно бывает, есть несколько типов систем, которые могут...

Это не происходит; Это не так

Раньше полагали, что Венера немного больше Земли, но это неверно (это не так).

1) однажды, одн раз

Мы видели его однажды (один раз) в его лаборатории.

еще раз, снова

проверить работу еще раз

сразу (Досл. «с одного раза»)

Счетно-решающее устройство сразу же выдало нам все необходимые сведения.

2) когда-то (однажды)

Ex. Atoms were once supposed to be indivisible units.
once *cj*

Ex. Once you know this principle, you can better understand...

Ex. Once cannon became available, these types of fortifications became obsolete.

30. as far as smth is concerned
as far as
concern [kən'se:n] *v*

→ as far as (so far as, in so far as) smth is concerned...

Ex. As far as the time scale is concerned, it is considered that...

31. error-free
error ['erə] *n*
free [fri:] *a*
error-free ['erə'fri:] *a*

Ex. error-free operation

32. alternative
alter ['ɔ:lٹə] *v*
alternative [ɔ:l'te:nətɪv] *n*

Ex. There are some alternatives to this arrangement.

Ex. They had the alternative of going by rail or by air.

Ex. You have no alternative but...

alternative *a*

Ex. An alternative method was...

33. art [ɑ:t] *n*
Ex. art of flying

Ex. the art of electronics
artificial [ɑ:tɪ'fɪʃəl] *a*

Ex. artificial horizon

state of art (state-of-the-art)

Ex. The author will review the state-of-the-art in the field of...

34. so [sou] *cj*

Когда-то считали, что атомы являются неделимыми частицами.

1) если, когда

Если вы знаете этот принцип, вы можете лучше понять...

2) когда, как только

Как только появилась пушка, эти типы укреплений оказались устаревшими.

поскольку, насколько
касаться (чего-л.), иметь отношение
(к чему-л.)

что касается чего-л., то;
поскольку речь идет о...

Что касается шкалы времени, то считают, что...

ошибка, погрешность
свободный
безошибочный, правильный (Досл.
«свободный от ошибок»)
правильная работа

изменять, менять

1) вариант (другой прибор, другое устройство и т. д.)

Существуют несколько вариантов (других типов) этого устройства.

2) выбор (одного из двух)

Они могли сделать выбор между путешествием по железной дороге и путешествием на самолете.

3) другой выход (из положения)

У вас нет другого выхода, кроме...

другой, противоположный

Другой метод заключался в том, что...

1) искусство, умение, опыт техники пилотирования (умение, опыт в пилотировании)

2) область (науки или техники)

область электроники

искусственный
искусственный горизонт (авиагоризонт)

уровень знаний, уровень технического развития, состояние, положение (в данной области)

Автор сделает обзор о положении в области...

1) таким образом, итак, поэтому

2) то же относится и (к чему-л.); аналогичным образом, также (перед вспомогательным или модальным глаголом при инверсии. Подробнее см. § 93).

Ex. Weight and lift are closely associated, so are thrust and drag.

35. **feel** [fi:l] (felt) *v*

Ex. to feel changes

feel certain (about smth)

We feel that...

Безличный оборот:

It is felt that...

Ex. It is felt that this type of treatment is suitable since...

Вес и подъемная сила тесно связаны между собой, то же относится и к тяге и лобовому сопротивлению (аналогичным образом связаны между собой тяга и лобовое сопротивление).

1) чувствовать, испытывать
чувствовать изменения

быть уверенным (в чем-л.)

2) полагать, считать

{ Мы полагаем, что...

{ Нам кажется, что...

Кажется, что...

Кажется, что такой подход является правильным, так как...

Урок восьмой

1. **semiconductor**

conductor [kən'daktə] *n*

semi-*pref*

semiconductor

['semikən'daktə] *n*

2. **unique** [ju.'ni:k] *a*

Ex. unique properties

проводник

полу-

полупроводник

3. **rectifier**

rectify ['rektifai] *v*

4. **rectifier** ['rektifaiə] *n*

Ex. cold-cathode rectifier

rectification

['rek'tifai'keʃn] *n*

Ex. anode rectification

5. **non-linear**

line [lain] *n*

linear ['liniə] *a*

non-*pref*

6. **put forward**

put *v*

forward *adv*

put forward

['put 'fɔ:wəd] *v*

Ex. to put forward an argument

7. **account for** [ə'kaunt 'fɔ:] *v*

Ex. This phenomenon accounts for the decrease in conductivity of metals.

Ex. Friction in liquids must be accounted for in this experiment.

единственный в своем роде, своеобразный, уникальный

свойства, единственные в своем роде

1) выпрямлять

2) детектировать

выпрямитель тока, детектор
выпрямитель с холодным катодом

выпрямление, детектирование

аудиодетектирование

линия, черта

линейный, прямолинейный

не-

нелинейный

ставить, класть

вперед, дальше

выдавать, предлагать

(Досл. «ставить вперед»)

выдвигнуть доказательство

1) объяснять

Это явление объясняет уменьшение проводимости металлов.

2) учитывать

В этом эксперименте необходимо учитывать трение в жидкостях.

3) компенсировать

Ex. In this case fusion processes yield enough energy to account for the losses to the surroundings.

7. surprising
surprise [sə'praɪz] *n*

surprising [sə'praɪzɪŋ] *a*

Ex. surprising news

surprisingly [sə'praɪzɪŋli]

Безличные обороты:

It is not surprising that...

Ex. It is not surprising that semiconductors found many applications in electrical engineering.

It is hardly surprising that...

8. by no means
means [mi:nz] *n*

by no means

Ex. The rocket is by no means a modern development.

9. emerge [ɪ'me:dʒ] *v*

Ex. In designing the engine special problems may emerge from...

emergency [ɪ'me:dʒənsi] *n*

Ex. in case of emergency

Ex. a device for use in emergencies
emergency *a*

Ex. emergency landing

10. at some length
length [leŋθ] *n*

at length

Ex. to discuss smth at length
at some length

11. owing to (smth) [auɪŋ'tu:]

Ex. Owing to its great mass, Jupiter has a very marked effect upon the motion of...

Несвободные словосочетания, близкие по значению:

- * because of (smth) }
- * on account of (smth) }
- * by (in) virtue of (smth) -
- * in view of (smth)
- * due to (smth) }
- * thanks to (smth) }

12. displacement

place *v*

displace [dɪs'pleɪs] *v*

displacement

[dɪs'pleɪmənt] *n*

В этом случае процессы синтеза дают достаточно энергии, чтобы компенсировать потери в окружающей среде.

1) удивление

2) неожиданность (Cp. «сюрприз»)

удивительный, неожиданный

неожиданные новости

к нашему удивлению

Неудивительно, что...

Неудивительно, что проводники нашли широкое применение в электротехнике.

Едва ли вызывает удивление тот факт, что...

средство, способ
никаким образом; отнюдь не

Ракета отнюдь не является современным изобретением.

появляться, возникать

При конструировании этого двигателя могут возникнуть особые проблемы в связи с...

1) чрезвычайное положение, особая обстановка, необходимость в случае крайней необходимости

2) авария, выход из строя приспособление, применяемое в случае аварии запасной, вспомогательный, аварийный

внуждения я посадка

длина

подробно (Досл. «длинико»)

подробно обсуждать (что-л.)

в некоторых подробностях

благодаря (чему-л.), вследствие (чего-л.)

Вследствие своей огромной массы, Юпитер имеет весьма значительное влияние на движение...

из-за, вследствие (чего-л.)

в силу, из-за (чего-л.)

ввиду, из-за (чего-л.)

благодаря (чему-л.), вследствие (чего-л.)

размещать, помещать

смещать, перемещать

смещение, перемещение

Ex. displacement current

13. within *prep, adv*
Ex. to move within the semiconducting solid

14. as distinct from (smth)
distinct [dɪ'stɪkt] *a*
as distinct from (smth)
Ex. As distinct from the electric motor a rocket motor converts heat into mechanical movement.

Несвободные словосочетания, близкие по значению:

In contrast to (wlth) (smth)

contrary to (smth)

15. zero ['zɪərəʊ] *n*
Ex. zero temperature

16. on the whole
whole [həʊl] *n*
→ on the whole
Ex. On the whole, the weight of the device should not exceed 50 lbs

17. Interfere with [,ɪntə'fɪə] *v*
Ex. Ionosphere storms interfere with reception.
interference
[,ɪntə'fɪərəns] *n*
Ex. Interference elimination

18. loosely
loose [lu:z] *a*
Ex. loose parts
Ex. loose coils
→ loosely ['lu:zli] *adv*
Ex. loosely bound

19. impurity
pure [pjueɪ] *a*
Ex. pure water
purity ['pjueɪrɪti] *n*
Ex. purity of metals
→ impurity [im'pjueɪrɪti] *n*

20. dissolve [dɪ'solv] *v*
Ex. Water dissolves salt.
Ex. Many substances dissolve in alcohol.

21. transfer [træns'fə:] *v*
Ex. Gas is transferred by underground tubes.
* transport *v*
* transmit *v*
* conduct *v*
* convey *v*
transfer *n*
Ex. transfer of heat

ток смещения
в пределах, внутри
двигаться в и у т р и полупроводя-
щего твердого тела

особый, отличный
в отличие от (чего-л.)

В отличие от электрического
двигателя ракетный двигатель пре-
вращает тепло в механическое дви-
жение.

в отличие от (чего-л.), в противопо-
ложность (чему-л.)

в противоположность (чему-л.)

иуль
и у л е в а я температура

1) целое
2) все
в целом, в общем
В целом вес прибора не должен превышать 50 фунтов.

мешать, препятствовать

Ионосферные бури мешают приему (радиосигналов).
помеха, интерференция

защита от помех

свободный, неплотный, слабый
с в о б о д н ы е (неплотно закреп-
ленные) части
с л а б ы е в и т к и
свободно, неплотно, слабо
с л а б о с в я з а н н ы й

чистый, беспримесный
ч и с т а я в о д а

чистота
ч и с т о т а м е т а л л о в (отсутствие примесей)

примесь

растворять (ся)
Вода растворяет соль.
Многие вещества растворяют-
ся в спирте.

переносить, передавать
Газ подается (переносится) по подземным трубам.

передавать, переводить, перемещать
(Ср. «транспортировать»)

передавать
проводить
передавать
перенос, передача
теплопередача

22. trace [treɪs] *n*

Ex. a trace of oxygen

trace [treɪs] *v*

Ex. The ancient dream of human flight can be traced in many legends.

traceable ['treɪsəbl] *a*

tracer ['treɪsər] *n*

Ex. the use of tracers in diagnostics

23. on the contrary

contrary ['kɒntrərɪ] *a*
on the contrary

Ex. There are two methods of increasing radiated power; one is by increasing the size of the transmitter itself; the other is, on the contrary, by providing a large transmitted antenna gain.

24. remove

move *v*
remove [rɪ'mu:v] *v*

Ex. to remove troops

removal [rɪ'mu:vəl] *n*

Ex. removal of heat
removable [rɪ'mu:vəbl] *a*

Ex. removable undercarriage

25. hole [houl] *n*

Ex. hole conduction

26. defect [dɪ'fekt] *n*

Ex. defect conduction

27. for the time being

Ex. For the time being this phenomenon can be considered as...

Другие несвободные словосочетания со словом time:

at times

in time

28. amplifier

amplify ['æmplifai] *v*

Ex. to amplify the current

amplifier ['æmplifaiər] *n*

Ex. reception amplifier

amplification

[æmplifi'keɪʃn] *n*

Ex. amplification factor

29. as compared with

compare [kəm'peər] *v*

→ as compared with (to) (smith)

1) след (Ср. «трасса»)

2) незначительное количество незначительное количество (следы) кислорода проследить

Во многих легендах можно проследить древнюю мечту человека о полетах.

прослеживаемый

1) регистрирующее устройство
2) меченный атом, радиоактивный (изотопный) индикатор
использование меченных атомов в диагностике (болезней)

противоположный и наоборот, напротив, в противоположность этому, с другой стороны (средство связи, выражающее противопоставление)

Существует два метода увеличения мощности излучения; один состоит в увеличении размера самого передатчика, другой, наоборот, состоит в создании большого коэффициента усиления антенны.

двигать(ся)

удалять, убирать, отодвигать

вывести (Досл. «удалить») войска

удаление, удаление

отвод тепла

подвижной, съемный

убирающееся шасси

отверстие, дырка

дырочная проводимость

недостаток, дефект

дефектная проводимость

в данное время, пока, на некоторое время

В данное время это явление можно рассматривать как...

иногда (Досл. «по временам»)
вовремя

усиливать, увеличивать

увеличить силу тока

усилитель

усилитель приема

усиление

коэффициент усиления

сравнивать

по сравнению с (чем-л.)

Ex. This engine is inefficient as compared with other aircraft engines.
30. tube [tju:b] n
Ex. a glass tube

Этот двигатель является неэффективным по сравнению с другими авиационными двигателями.
1) труба, трубка (Ср. «тюбик»)
стеклянная трубка
2) электронная лампа

Дополнительный список словосочетаний по теме урока

Несвободные словосочетания со словом *part*:

- for the most part
- part [pɑ:t] n
- for the most part
- Ex. The study of the properties of germanium will, for the most part, be restricted to... In part
- Ex. The speed of the airplane depends, in part, on... on the part of (smb)
- Ex. This work demands great skill on the part of the personnel.

часть
главным образом, по большей части
Изучение свойств германия главным образом будет ограничено...

частично, отчасти
Скорость самолета зависит от части от...
со стороны (кого-л.)

Эта работа требует большой квалификации со стороны персонала.

Несвободные словосочетания со словом *date*:

- up to date
- date [deɪt] n
- up to date
- Ex. up to date equipment
out of date
- Ex. As the equipment was out of date, it was necessary... to date
- Ex. To date little is known of such semiconductors as...

дата, число
современный, новейший (Досл. «приблизившийся к настоящему времени»)
современное оборудование
устаревший

Так как оборудование устарело, было необходимо...
на сегодняшний день, до настоящего времени

до сих пор
До настоящего времени (на сегодняшний день) мало известно о таких полупроводниках, как...

Несвободные словосочетания со словом *as*:

- as yet
- Ex. As yet the speed of the airplane was limited to...
- as if
- as though
- Ex. Electrons in crystals have wave properties as if they were in free space.

еще, до сих пор, все еще, пока
До сих пор скорость самолета была ограничена...

} как если бы

Электроны в кристаллах проявляют волновые свойства, как если бы они находились в свободном пространстве.

Несвободные словосочетания, выполняющие функцию предлогов:

- apart from (smth)
- apart [ə'pa:t] adv
- apart from (smth)
- Ex. Apart from its pioneering effort in the field of guidance this rocket was...

отдельно, в стороне
помимо, кроме (чего-л.)

Помимо того, что эта ракета была первой попыткой создать ракету с системой наведения, она...

aside from (smth)

aside [ə'saɪd] *adv*

aside from (smth)

Ex. *Aside from safety considerations we must take into account...*

together with (smth)

together [tə'geðə] *adv*

together with (smth)

Ex. *The more complex atoms have more and more protons and neutrons in the nucleus, together with a corresponding increase of planetary electrons.*

Несвободные словосочетания, близкие по значению:

combined with (smth)

combine [kəm'bain] *v*

combined with (smth)

• in conjunction with (smth)

• along with (smth)

with (in) reference to (smth)

reference ['refrəns] *n*

with (in) reference to (smth)

Ex. *The wing does not move with reference to the rest of the airplane.*

• with (in) regard to (smth)

• as regards (smth)

• with respect to (smth)

irrespective of (smth)

irrespective [,ɪrɪs'pektɪv] *a*

Irrespective of (smth)

Ex. *Irrespective of the number of neutrons, isotopes of an element are atoms whose nucleus...*

at the expense of (smth)

expense [ɪk'spens] *n*

at the expense of (smth)

Ex. *Plasma oscillations grow at the expense of the electron energy.*

previous to (smth)

previous ['pri:vjəs] *a*

Ex. *on the previous page*

• former *a*

• prior *a*

previous to (smth)

Ex. *Previous to the discovery of the atomic energy...*

• prior to

previously ['pri:vjəsli] *adv*

Ex. *a factor previously known*

Ex. *Some of these factors have been considered previously.*

в стороне

кроме, помимо (чего-л.)

Помимо соображений безопасности, мы должны принимать во внимание...

вместе

наряду с (чем-л.), вместе с (чем-л.)

Более сложные атомы имеют все большее и большее количество протонов и нейтронов в ядре наряду с соответствующим увеличением планетарных электронов.

объединять(ся)

наряду, вместе с (чем-л.) (Досл.

«объединенные с» чем-л.)

наряду, вместе, в связи с(чем-л.)

наряду, вместе с (чем-л.)

отношение

в отношении (относительно) (чего-л.)

Крыло неподвижно относительно остальной части самолета.

относительно, что касается, в отношении (чего-л.)

что касается, в отношении (чего-л.)

что касается, в отношении (чего-л.)

безотносительный, независимый независимо от (чего-л.) (Досл. «безотносительно» от чего-л.)

Независимо от количества нейтронов, изотопы элемента представляют собой атомы, ядро которых...

транзакция, расход, счет

за счет (чего-л.)

Колебания плазмы увеличиваются за счет энергии электронов.

предыдущий, прежний

на предыдущей странице

прежний

предшествующий

до (чего-л.), перед (чем-л.)

До открытия атомной энергии...

до, перед (чем-л.)

1) заранее, предварительно

фактор, заранее известный

2) раньше

Некоторые из этих факторов рассматривались раньше.

Другие несвободные словосочетания:

now that *cf*

Ex. Now that the "canals" on Mars seem to be definitely natural features, interest focuses on...

except for

except [ɪk'sept] *prep*

except for (smth)

Ex. Except for Mercury and Venus, each of the planets has at least one satellite.
on the average
average ['ævrɪdʒ] *n, a*
on the average

Ex. This phenomenon happens, on the average, about once in 6×10^7 years.
one another
each other

Ex. In the ideal gas molecules exert no forces upon one another.

теперь, когда

Теперь, когда определено, что «каналы» на Марсе являются, по-видимому, естественными особенностями ландшафта, интерес сосредоточивается на...

как, исключая

за исключением (чего-л.)

За исключением Меркурия и Венеры, каждая планета имеет по крайней мере один спутник.

среднее число; среднее в среднем

Это явление происходит в среднем примерно раз в 6×10^7 лет.

} друг друга

В идеальном газе молекулы не воз действуют друг на друга.

Урок девятый

1. prospect ['prɒspekt] *n*

Ex. the prospect of great speeds

2. to begin with

Ex. To begin with, the paths of cosmic rays are affected by magnetism, and...

Средства связи, близкие по значению:

first }

at first

first of all

in the beginning

перспектива

перспектива огромных скоростей

прежде всего, во-первых (средство связи, указывающее на порядковую последовательность мыслей и действий)

Во-первых, на траекторию космических лучей оказывает воздействие магнитное поле и...

прежде всего, во-первых

прежде всего

сначала, прежде всего

1) несомненный, верный

несомненное доказательство

2) уверенный (в функции предикатива)

Он уверен в успехе

3) конечно, несомненно, обязательно

Погода, конечно (несомненно), улучшится.

убеждаться, удостоверяться

Летчик проверяет реактивное сопло и убеждается, что заглушка снята.

to be sure

Ex. To be sure, the world's supply of petroleum may be used up very soon.

ensure [in'ʃue] v

Ex. to ensure high rate of climb

* provide v

4. again [ə'geɪn] adv
cj

конечно, несомненно (пояснительное словосочетание, выражающее уверенность).

Несомненно, мировые запасы нефти могут быть исчерпаны очень скоро.

обеспечивать, гарантировать
обеспечить высокую скоро-

подъемность

обеспечивать

снова, опять

кроме того, далее, более того, с другой стороны (средство связи, выражающее присоединение к высказыванию, т. е. содержащее дополнительные замечания к высказанному)

Измерения интенсивности влуче-
дали сведения о концентрации частиц
на высоте примерно до 40 миль.
Кроме того, спектроскопические
исследования излучения дали воз-
можность...

Ex. Measurements on the intensity along the beam have given information on the particle concentration up to about 40-mile level. Again, spectroscopic studies of the radiation have enabled...

Средства связи, близкие по значе-
нию:

also

likewise }

similarly }

besides

now

furthermore

[fə:ðə'mɔ:]

* in addition

* moreover [mɔ:'ru:nə] adv

5. endurance

endure [in'dju:e] v

Ex. We can endure the pressures at the bottom of our ocean of air because...

endurance [in'djuərəns] n

Ex. endurance test

Ex. endurance limit

* duration n

* durability n

6. in consequence

consequence

[kən'sikwəns] n

→ in consequence

кроме того, а также, более того
точно так же, аналогичным образом

кроме этого, помимо этого

1) итак

2) далее

кроме того, к тому же

в дополнение к сказанному; кроме
того

кроме того, более того

1) выдерживать, терпеть

Мы можем выдержать давле-
ние на дне нашего воздушного океана, потому что...

2) длиться

1) длительность, продолжительность
испытание на продолжитель-
ность полета

2) выносливость, прочность

предел выносливости
продолжительность, длительность
выносливость, прочность

следствие, результат

следовательно, вследствие этого
(средство связи, показывающее,
что высказывание является следст-
вием, суммированием предыдуще-
го)

Ракетный двигатель несет в себе не
только горючее, но также и необхо-
димый окислитель. Вследствие

Ex. The rocket engine carries within itself not only the fuel, but also the oxygen required. In conse-
quence

sequence, its operation is independent both of altitude and forward speed.

Средства связи, близкие по значению:

as a consequence }
consequently }
[kən'sikwəntli] adv

- accordingly [ə'kɔ:dɪglɪ]
- hence
- thus [ðəs]
- so [sou]
- therefore [ðeəfɔ:s]

7. warn [wɔ:n] v
Ex. to warn of danger
warning [wɔ:nɪŋ] n
Ex. warning means

8. shielding
shield [ʃi:ld] n
Ex. The building of nuclear radiation shield is a necessary part of the man-in-space project.

shield v
Ex. Attempts were made to shield the gas from all possible external sources of radiation.

- protect v
- defend v
- shielded [ʃi:ldɪd] a
Ex. shielded location

→ shielding ['ʃi:ldɪŋ] n
Ex. nuclear radiation shielding

9. percentage
per cent [pə'sent] n
percentage
[pə'sentɪdʒ] n

Ex. percentage load

10. publish ['pʌblɪʃ] v
Ex. to publish a paper

- reveal v
- release v

11. all-up ['ɔ:l'ʌp] a
Ex. all-up weight

12. payload
pay v
load n
→ payload ['peɪləud] n

Ex. The range of this airplane with a payload of 26,450 lbs is about 2,000 miles.

13. otherwise
other a
→ otherwise ['ʌðəwaɪz] adv

это его работа не зависит ни от высоты полета, ни от поступательной скорости.

следовательно, вследствие этого

следовательно, поэтому отсюда, поэтому итак, таким образом поэтому предупреждать, предостерегать предупредить об опасности предупреждение средство (средства) предупреждения

щит, защита, экран

Создание защиты от ядерной радиации является необходимой частью программы исследования «Человек в космосе».

защищать, заслонять; экранировать

Были предприняты попытки изолировать (защитить) газ от всех возможных внешних источников радиации.

защищать, предохранять

защищаться(ся), оборонять(ся)

защищенный, экранированный

экранное пространство

экранирование, защита

защита от ядерной радиации

процент

процент, процентное отношение

нагрузка в процентах

опубликовывать, печатать

опубликовать статью

раскрывать

выпускать, опубликовывать

полный

полный полетный вес

платить

груз

полезный (Досл. «оплачивающий, окупавший себя») груз

Дальность полета этого самолета с полезным грузом 26 450 фунтов (12 000 кг) составляет около 2000 миль (3200 км).

другой, иной

1) другим способом, иначе

Ex. to prevent wide temperature extremes that would otherwise occur in the pilot's compartment

Ex. all available and otherwise suitable materials

Ex. the changes whether positive or otherwise...

otherwise *cj*

Ex. The circuit must be closed, otherwise the current will not flow.

Средства связи, близкие по значению:

on the contrary
in (by) contrast
['kɔntrəst]
conversely [kən've:sli]
alternatively
[ɔ:l'tə:nativli]
rather ['ra:ðə]
• nevertheless [,nevəðə'les]
• however [hau'vevə]
• on the one hand
• on the other hand

14. volume ['vɔ:lju:m] *n*

Ex. the volume of a fuel tank

15. then *adv*

cj

Ex. First of all a spaceship must have heat shield that will prevent overheating of the load. Then, it must be controlled in a manner that will...

Средства связи, близкие по значению:

next [nekst]
further ['fa:ðə]
second ['sekənd]
secondly ['sekəndlɪ]

16. assembly

assemble [ə'sembli] *v*

Ex. to assemble facts

assembly *n*

Ex. an assembly of molecules

предотвратить резкие колебания температуры, которые в противном случае наблюдались бы в кабине летчика

2) в других отношениях, в остальном все имеющиеся и пригодные в других отношениях материалы

3) употребляется в значении, противоположном только что высказанному:

изменения, являются ли они положительными или отрицательными... иначе, в противном случае (средство связи, выражающее противопоставление)

Цепь должна быть замкнута, иначе (в противном случае) ток не потечет.

и наоборот, напротив, в противоположность этому, с другой стороны

скорее, вернее, пожалуй тем не менее, несмотря на это однако

с одной стороны
с другой стороны

объем, емкость
емкость (объем) топливного бака

тогда, в этом случае

1) далее, затем

2) следовательно

Прежде всего межпланетный корабль должен быть снабжен теплоизоляционным экраном. Далее, он должен иметь такое управление, чтобы...

далее, затем

во-вторых

собирать (в определенном порядке), монтировать (двигатель)

собирать факты (группировать факты)

1) совокупность (чего-л.), скопление молекул

2) агрегат, установка, устройство (если перед assembly стоит существительное — название этого уст-

Ex. carburetor assembly

Ex. to achieve precision in the assembly of components

17. replace

place *v*

replace [ri:'pleis] *v*

Ex. When machines replaced horses...
replacement
[ri:'pleis'ment] *n*
Ex. replacement of the combustion chamber by a heat exchanger

18. pile [paɪl] *n*

Ex. an atomic pile

19. shut down

shut *v*

shut down ['ʃʌt 'daʊn] *v*

Ex. to shut down a reactor

20. decay [di'keɪ] *n*

Ex. radioactive decay

* fission *n*

* disintegration *n*

Ex. decay of power

decay [di'keɪ] *v*

Ex. to cause an element to decay

21. core [kɔ:] *n*

Ex. core of the earth

22. accident ['æksɪdənt] *n*

Ex. an accident to an airplane

* failure *n*

accidental [æksɪ'dentl] *a*

Ex. an accidental shot

accidentally

[,æksɪ'dentlɪ] *adv*

23. harmful

harm [hɑ:m] *n*

harmful ['hɑ:mfl] *a*

Ex. harmful radiations

harmless *a*

Ex. harmless amount of radiation

harm *v*

Ex. The explosion gases may harm the personnel.

24. accompany [ə'kʌmpnɪpi] *v*

Ex. Some dangerous by-products accompany the process of uranium fission.

25. ease

easy *a*

ease [i:z] *v*

родства, то assembly часто не переводится)

карбюратор

3) сборка, монтаж
достичь точности в монтаже
(сборке) деталей

помещать, размещать
замещать, заменять

Когда машины заменили лошадей...
замещение, замена

замена камеры сгорания теплообменником

реактор
ядерный реактор

закрывать(ся)

выключать, останавливать (двигатель)

выключить реактор

i) распад, разложение

радиоактивный распад

расщепление, распад

распад

2) спад, затухание

спад мощности

разрушаться, распадаться

заставить элемент распасться

сердцевина, внутренняя часть, ядро

внутреннее ядро земли

несчастный случай, катастрофа, авария

авария самолета

авария, отказ в работе (механизма)

случайный

случайный выстрел

случайно

вред, ущерб

вредный

вредные излучения

безвредный

безвредная доза радиации

вредить, причинять вред

Газы, образующиеся при взрыве, могут причинить вред обслуживающему персоналу.

сопровождать, сопутствовать (Cp. «аккомпанировать»)

Процесс расщепления урана сопровождается выделением опасных продуктов распада.

легкий

облегчать

Ex to ease the problem of structural design
• facilitate v
ease n
Ex. ease of designing
easily ['i:zli] adv

облегчить задачу расчета конструкции
облегчать
легкость, удобство
легкость конструирования
легко, свободно
обстоятельство, случай, условие

26. circumstance
['sə:kəmstəns] n

Ex. Under some circumstances the aircraft designer must compromise in order to...

В некоторых случаях (при некоторых обстоятельствах) авиационный конструктор вынужден идти на компромисс для того, чтобы...

* case n
* condition n

случай, обстоятельство
условие, обстоятельство
вкратце, короче говоря (средство связи, показывающее, что высказывание является следствием, суммированием предыдущего)

27. in short

Короче говоря, число g не должно превышать допустимых пределов.

Ex. in short, the g-load must be within tolerable limits.

Средства связи, близкие по значению

in a few words
• in brief
• briefly }

вкратце

28. while

while [wail] c/
Ex. While Newton studied the motion of different bodies, he noticed...
while c/

Ex. While this design is of great interest, it is still...

1) в то время, как; тогда как
В то время, когда Ньютона изучал движение различных тел, он заметил...

2) хотя

Хотя эта конструкция и представляет большой интерес, она все же...

29. choose [tʃu:z] (chose, chosen) v
Ex. to choose a suitable form of a fuel

1) выбирать
выбрать подходящее топливо

Ex. Now they choose to make the fuselage in the form of a streamlined body.

2) предпочитать (делать выбор)
Теперь предпочитают делать фюзеляж в форме обтекаемого тела.

choice [tʃɔ:s] n
Ex. a wide choice of plastics

выбор

большой выбор пластических материалов

30. to sum up

Ex. To sum up, the book places emphasis on those properties of crystalline solids which...

итак; суммируя, можно сказать, что...

Средства связи, близкие по значению

in sum
in summary
to summarize }

итак; суммируя, можно сказать, что...

31. expensive

Expend [iks'pend] v
Ex. They expend much rubber in aircraft industry.

тратить, расходовать

expenditure
[iks'penditʃə] n

В авиационной промышленности расходуется много каучука.
транспорт, расход, затраты

Ex. This process involves the expenditure of 150 kw-hrs.

expense [iks'pens] *n*
at the expense of (smth)
expensive [iks'pensiv] *a*

Ex. Berillium metal is expensive.

Этот процесс требует затраты (расхода) 150 киловатт-часов (электроэнергии).

затраты, расход, счет
за счет (чего-л.)
дорогой, дорогостоящий (требующий больших затрат)

Бериллий — дорогой металл.

Дополнительный список слов и словосочетаний по теме урока

also ['ɔ:lsou] *adv*
c)

Ex. The warm air heats air above it. Also, the warm air will rise, and...

still [stil] *adv*
c)

Ex. Still, some advantages in aircraft design accompany the use of atomic fuel.

yet [jet] *adv*
c)

Ex. The nucleus of an atom contains most of the atom's mass. Yet, it occupies little of the atomic volume.

lastly ['la:stli]

Ex. Lastly, the landing craft must have maneuverability that will make it possible...

Средства связи, близкие по значению:

in the end
at last
• finally *adv*

1) также, тоже
2) кроме того, более того (средство связи, выражающее присоединение к высказыванию, т. е. содержащее дополнительные замечания к высказанному)

Теплый воздух нагревает воздух, расположенный выше него. Кроме того, теплый воздух будет подниматься и...

1) все еще, до сих пор, еще
2) однако, тем не менее (средство связи, выражающее противопоставление)

Однако применение атомного топлива дает некоторые преимущества при конструировании самолета.

1) еще, все еще
2) однако, тем не менее (средство связи, выражающее противопоставление)

В ядре сосредоточена большая часть массы атома. Тем не менее ядро занимает незначительную часть объема атома.

и наконец (средство связи, указывающее на порядковую последовательность мыслей и действий)

И наконец приземляющийся корабль должен обладать маневренностью, которая позволит...

и наконец, в конце концов

Урок десятый

1. outside

outside ['aut'saɪd] *a*
Ex. outside interference

• external *a*

• outer *a*

outside *prep*

Ex. outside the Earth's magnetic field

Ant. inside [in'saɪd] *a*

наружный, внешний
внешние помехи

внешний, наружный

вне, за пределами

за пределами и магнитного поля

Земли

внутренний

Ex. an inside diameter

- * internal a
- * inside prep

Ex. inside the combustion chamber

2. collide [kə'laid] v

Ex. to collide with an atom
collision [kə'lizn] n

Ex. collisions between molecules.

3. violently

violent ['vaɪələnt] a

Ex. violent disturbances

→ violently ['vaɪələntli] adv

Ex. to collide violently

4. encounter [in'kaʊntə] v

Ex. to encounter a difficulty

- * meet (met) v

5. impart

part n

→ impart [ɪm'pa:t] v

Ex. to impart initial speed to a rocket

6. fragment ['frægmənt] n

Ex. fragments of atoms

7. in effect

effect [ɪ'fekt] n

in effect

Ex. The tail of the airplane is in effect another wing producing an upward force.

effect [ɪ'fekt] v

Ex. The first space flight was effected in the Soviet Union.

8. eventually

eventual [ɪ'ventʃuəl] a

→ eventually [ɪ'ventʃuəli] adv

Ex. The fate of a cosmic ray particle is very complicated. Eventually it must give up all its kinetic energy by...

9. ultimately

ultimate ['ʌltɪmət] a

Ex. ultimate cost

Ex. ultimate output

Ex. ultimate strength

→ ultimately ['ʌltɪmətlɪ] adv

внутренний диаметр,

диаметр в свету

внутренний

внутри камеры сгорания

сталкиваться (с чем-л.)

столкнуться с атомом

столкновение (Cр. «коллизия»—столкновение противоположных сил, интересов)

столкновения молекул

сильный, бурный

сильные возмущения

с большой силой, бурно

столкнуться с большой силой

встречать(ся), сталкивать(ся), иметь

столкновение

встретиться (столкнуться) с

трудностью

встречать

часть

отдавать (часть чего-л.), передавать,

сообщать

сообщить ракете начальную скорость

осколок, обломок (Cр. «фрагмент»—

отрывок из литературного или музыкального произведения)

элементы распада (обломки) атомов

действие

по существу, в действительности

Хвостовое оперение самолета является по существу еще одной поверхностью, создающей подъемную силу.

осуществлять, производить

Первый космический полет был осуществлен в Советском Союзе.

1) возможный

2) конечный

в конце концов, в конечном счете

Судьба частицы космического луча сложная. В конце концов она должна отдать всю свою кинетическую энергию...

1) окончательный, конечный

окончательная стоимость

2) максимальный, предельный

максимальная мощность

предельная прочность

в конце концов, в конечном счете

Ex. The speed of the helicopter is ultimately determined by...

10. unrecognized

recognize ['rekognais] *v*

Ex. to recognize a signal

Ex. That kinetic energy could be turned into potential energy was recognized in the early days of mechanics.

unrecognized

['ʌn'rekognaidz] *a*

Ex. unrecognized signals recognizable

['rekognaisbl] *a*

Ex. The image on the sight is recognizable as a moving target.

recognition

['rekəg'nɪʃn] *n*

Ex. recognition signals

Ex. His ideas did not find recognition.

11. arrive [ə'raiv] *v*

Ex. to arrive in Moscow

Ex. to arrive at a conclusion

* come (came, come) *v*

* reach *v*

* attain *v*

arrival [ə'raivəl] *n*

Ex. arrival of meteorites in the atmosphere

12. roughy

rough [rʌf] *a*

Ex. a rough surface

Ex. a rough estimate

roughly ['rʌflɪ] *adv*

Ex. The total weight roughly amounts to 100 tons.

13. radiant ['reidənt] *a*

Ex. radiant energy

14. affect [ə'fekt] *v*

Ex. All metals are affected to some extent by the atmosphere.

unaffected [ʌnə'fektid] *a*

Ex. components unaffected by corrosion

15. undertake [ʌndə'teik] (undertook, undertaken) *v*

Ex. The launching of the rocket was undertaken in 1960.

Скорость вертолета в конечном счете определяется...

1) узнавать, распознавать

распознать сигнал

2) признавать, обнаруживать

То, что кинетическая энергия может быть превращена в потенциальную энергию, было обнаружено еще в самом начале развития механики.

неузнанный, неопознанный

неопознанные сигналы
распознавательный, различимый

По изображению, появляющемуся в прицеле, можно распознать движущуюся цель.

1) узнавание, опознавание

опознавательные сигналы

2) признание

Его имен не получили признания.

1) прибывать (в какое-л. место);
приезжать, приходить
прибыть в Москву

2) приходить, достигать
прийти к заключению
приходить, приезжать
достигать

прибытие, поступление
проникновение метеоритов в атмосферу

1) грубый, шероховатый
шероховатая (грубая) поверхность

2) приблизительный, примерный
приблизительная оценка
приблизительно, примерно

Общий вес составляет приблизительно 100 тонн.

лучистый, излучающий (ср. «радиация» — излучение)
лучистая энергия

влиять, воздействовать

Все металлы в той или иной степени подвергаются воздействию атмосферы.

незатронутый

части, не затронутые коррозией

предпринимать, производить

Запуск этой ракеты был произведен в 1960 году.

undertaking
[ʌndə'teɪkɪŋ] *n*

Ex. The launching of a spaceship is a very complex undertaking.

16. **sparking**

spark [spɔ:k] *n*

Ex. a spark transmitter

spark *v*

→ **sparking** ['spɔ:kɪŋ] *n*

Ex. Sparking could take place if the potential difference across the gas were high enough.

17. **curiously enough**

curiously ['kjueriəslɪ] *adv*

enough [ɪ'nʌf] *adv*

→ **curiously enough**

Ex. Curiously enough, the experiments did not confirm the theoretical conclusions.

18. **sample** ['sa:mpl] *n*

Ex. samples of sand

Ex. samples of air

* example

sample *v*

19. **precaution** [pri'kɔ:ʃn] *n*

Ex. With these precautions, plus intelligent design it is possible to...

20. **eliminate** [lɪ'mi:nɪt] *v*

Ex. to eliminate errors

Ex. to eliminate an unknown quantity or a function

* exclude *v*

elimination [lɪ'mi:n'eɪʃn] *n*

Ex. elimination of errors

21. **enclose**

close *a*

→ **enclose** [ɪn'klouz] *v*

Ex. In the first balloons hot air was enclosed in paper bags.

Ex. the enclosed fluid

* surround *v*

22. **diminish** [dɪ'mi:nɪʃ] *v*

Ex. to diminish the bulk of the engine

* decrease *v*

* reduce *v*

23. **immediately**

immediate [ɪ'mi:dʒet] *a*

Ex. immediate connection

* direct *a*

предприятие, задача, дело

Запуск космического корабля — очень сложное дело.

искра

искровой передатчик

искриться, зажигать искрой

искрение, разряды искры

Искрение произошло бы, если бы в газе была достаточно высокая разность потенциалов.

странно, необычно

достаточно

как ни странно (словосочетание, дающее оценку высказыванию)

Как ни странно, опыты не подтвердили теоретических выводов.

1) образец

образцы песка

2) проба

пробы воздуха

пример, образец

брать пробу

мера предосторожности

При таких мерах предосторожности и разумном проектировании можно...

устранять, исключать

устранить ошибки

исключить неизвестную величину или функцию (из уравнения)

исключать

устранение, исключение

устранение ошибок

закрытый, близкий

помещать, заключать (во что-л.)

В первых аэростатах теплый воздух находился в бумажных оболочках.

жидкость, находящаяся (заключающаяся) внутри сосуда

окружать

уменьшать(ся)

уменьшить размеры двигателя

уменьшать

уменьшать, понижать

1) непосредственный, прямой

и непосредственная (прямая) связь

прямой, непосредственный

2) немедленный, мгновенный

→ Ex. immediate action
 Ex. the immediate future
 immediately [ɪ'mi:dʒətlɪ] *adv*
 Ex. Thermoelectric generators convert heat to electricity immediately...

24. **somewhat** ['sʌmθwɔ:t] *adv*

Ex. Beta-rays are somewhat more penetrating than alpha-rays.
 something [ˈsʌmθɪŋ] *adv*
 something like

Ex. The speed of the aircraft was something like 200 miles per hour.

25. **thereafter** [ðeər'ə:ftə] *adv*

thereby
 therein
 therewith
 therefrom

Ex. Up to the altitude of 500 feet the speed increases, and thereafter decreases steadily.

26. **attribute** [ə'tribju:t] *v*

Ex. At that time residual ionization was attributed to the radioactivity of the earth.

* refer *v*
 attribute ['ætribju:t] *n*

27. **confirm** [kən'fə:m] *v*

Ex. experiments confirming the hypothesis
 * prove *v*
 confirmation [kənfə'meɪʃn] *n*

Ex. The report lacks confirmation.

28. **feature** ['fi:tʃə] *n*

Ex. A most significant feature of the rocket is its ability to function in the vacuum of space.

* property *n*
 * characteristic *n*

мгновенное действие
 ближайшее будущее

1) непосредственно

Термоэлектрические генераторы превращают тепло в электричество непосредственно...

2) немедленно, сразу же несколько, отчасти, до некоторой степени

Бета-лучи обладают несколько большей проникающей силой, чем альфа-лучи.
 что-то, нечто приблизительно, около (перед числительным)

Скорость самолета составляла приблизительно 200 миль (320 км) в час.
 после этого, затем

Сложные слова, состоящие из слова there и какого-либо предлога, переводятся начиная со второго компонента (предлога), первый компонент there переводится словом «это» в соответствующем падеже.

посредством этого
 в этом (здесь, там)
 посредством этого, с этим
 из этого, оттуда

До высоты 500 футов (150 м) скорость увеличивается, а после этого (затем) непрерывно уменьшается. относить за счет (чего-л.), приписывать (чemu-л.)

В то время остаточная ионизация приписывалась радиоактивности земли.
 относить (что-л., к чему-л.)
 свойство, характерный признак (Ср. «атрибут»)

подтверждать
 опыты, подтверждающие эту гипотезу
 доказывать
 подтверждение

Доклад недостаточно мотивирован (обоснован).
 (Доклад не получил подтверждения, ему недостает подтверждения)
 свойство, особенность, характеристика

черт
 Весьма важной особенностью ракеты является ее способность действовать в безвоздушном пространстве.

свойство
 характеристика, особенность

29. **apparently**
apparent [ə'pærənt] *a*
Ex. apparent defects
 * obvious *a*
 * evident *a*

Ex. apparent output
 * visible *a*
 * seeming *a*
 → **apparently** [ə'pærəntli] *adv*
Ex. Apparently, meteorites originated at roughly the same time as our earth.

30. **occasionally**
occasion [ə'keiʒn] *n*

Ex. on occasion
occasional [ə'keiʒnəl] *a*
Ex. to record occasional signals

 → **occasionally**
 [ə'keiʒnəl] *adv*
Ex. These particles penetrate occasionally deep into the earth.

31. **whereas** [weər'æz] *cj*
Ex. Liquid oxygen is a little heavier than water, whereas liquid nitrogen is lighter.

32. **merely**
mere [mɪə] *a*

Ex. the mere existence of quasars confirms that...
merely ['mɪəlɪ] *adv*
Ex. The wave and particle properties of light are found to be merely two different aspects of the same thing.

33. **middle** ['mɪdl] *n*
Ex. the middle of the century
middle *a*
Ex. middle ages

34. **obey** [ə'beɪ] *v*
Ex. to obey a law

1) очевидный, явный
 очевидные (явные) дефекты
 очевидный, явный
 очевидный, ясный
 2) кажущийся, мнимый
 кажущаяся мощность
 видимый
 кажущийся
 очевидно, по-видимому
 Метеориты, по-видимому, возникли примерно в то же время, что и наша земля.

случай, обстоятельство (ср. «оказия»)
 при случае, в случае необходимости
 случайный, редкий
 регистрировать случайные (приходящие время от времени) сигналы
 иногда, время от времени

Эти частицы иногда проникают глубоко в землю.

тогда как
 Жидкий кислород немного тяжелее воды, тогда как жидкий азот — легче.

1) простой
 2) лишь, только, один лишь
 само (одно лишь) существование квазаров подтверждает, что...
 только, лишь
 Установлено, что волновые и корпускулярные свойства света являются только (всего лишь) двумя сторонами одного и того же явления.

середина
 середина века
 средний
 средние века
 подчиняться, повиноваться
 подчиняться закону

Урок одиннадцатый

1. **balloon-borne**
balloon [bə'lju:n] *n*
borne [bɔ:n] *р.р. от bear* [beə]
 → **balloon-borne** *a*
Ex. balloon-borne instruments
 Другие сложные слова, в состав которых входит слово *borne*:
rocket-borne *a*

воздушный шар; аэростат; шар-зонд
 носимый, установленный
 установленный на аэростате, бортовой
 приборы, установленные на аэростате

установленный на ракете, бортовой

Ex. rocket-borne recorders

airborne a

Ex. airborne instruments

Ex. airborne radioactivity

2. rule out

rule [ru:l] n

Ex. a rule of nature

* law n

as a rule

Ex. As a rule, materials entering into the construction of aircraft are thoroughly tested.

rule v

rule out v

Ex. to rule out any possibility of harmful radiation

3. indeed [ɪn'di:d] adv

Ex. The lever is, indeed, the simplest machine

Другие слова и словосочетания, выражающие уверенность:

needless to say

in reality

true

to say the truth

to tell the truth

Обороты (в форме главных предложений):

It is true...

It is (quite) certain that...

There is no doubt that...

It is beyond doubt that...

It is more likely that...

There is every indication that...

It is a safe assumption that...

Ex. It is true that the nuclear powered aircraft will have an exceedingly long range but...

4. interaction

action [ækʃn] n

Inter- ['ɪntə] pref

interaction [,ɪntə'ækʃn] n

Ex. interaction of radio waves

interact [,ɪntə'ækf] v

5. solar ['səʊlə] a

Ex. solar radiation

самозаписывающая аппаратура, установленная на ракете

1) самолетный, установленный на самолете, бортовой.

самолетные приборы, бортовые приборы самолета

2) воздушный, находящийся в воздухе

радиоактивность воздуха

правило, закон'

закон природы

закон

как правило

Как правило, материалы, используемые в конструкции самолета, тщательно испытываются.

управлять

исключать

исключить всякую возможность вредной радиации

действительно, в самом деле

Рычаг действительно является простейшим механизмом.

ничего и говорить, само собой разумеется

в действительности

несомненно

} по правде говоря

• Несомненно...

Несомненно, что...

Нет никакого сомнения в том, что...

Несомненно, что...

Несомненно (более чем вероятно), что...

Все говорит о том (указывает на то), что... (Досл. «имеются все указания, что...»)

Есть все основания предполагать, что... (Досл. «безопасное предположение заключается в том, что...»)

Несомненно, самолет с атомным двигателем будет иметь чрезвычайно большую дальность полета, но...

действие

меж-, между-, взаимно-, взаимно-взаимодействие

взаимодействие радиоволн

взаимодействовать

солнечный

солнечная радиация, излучение

солнца

6. correlation

correlate ['kɔrəleɪt] *v*

Ex. It is necessary to correlate this information with other observations.

→ correlation [,kɔr'i'leɪʃn] *n*

Ex. correlation of weights and heights

7. flare [flæə] *n*

Ex. a solar flare

8. in fact

Ex. in fact at least one radioactive isotope is known to exist for all known elements.

9. sunspot

sun *n*

spot [spɔt] *n*

→ sunspot ['sʌnspɔt] *n*

10. capture

capture ['kæptʃə] *n*

Ex. the capture of slow neutrons

capture *v*

Ex. Slow neutrons are captured by atoms in some reactions.

11. more or less

Ex. to move more or less uniformly

Другие словосочетания, служащие для выделения, уточнения и ограничения отдельных частей высказывания:

generally speaking

in general

generally

strictly speaking

Ex. Strictly speaking the ionization chamber measures a very special property of the radiation.

at any rate

at best

at most

in a sense

in a general (broad) sense

Ex. At any rate, a knowledge of cosmic radiation is essential now.

not to mention

to say nothing

Ex. Not all of the aircraft are suitable for highspeed flight, to say nothing of helicopters.

12. whereby [wɛə'baɪ] *adv*

соотносить, сопоставлять

Необходимо сопоставить эти данные с другими наблюдениями.

соотношение, корреляция

соотношение между весом и высотой

вспышка, сияние, сверкание

вспышка на Солнце

фактически, в действительности

В действительности известно, что для каждого элемента есть по крайней мере один радиоактивный изотоп.

солнце

пятно

солнечное пятно

захват, улавливание

захват медленных нейтронов

захватывать, улавливать

Медленные нейтроны захватываются атомами во время некоторых реакций.

более или менее

двигаться более или менее равномерно

вообще говоря, в общем

строго говоря

Строго говоря, ионизационная камера определяет очень специфическое свойство радиации.

во всяком случае

в лучшем случае

в определенном смысле

в широком смысле слова

Во всяком случае определение космической радиации имеет сейчас существенное значение.

не говоря (о чем-л.)

Не говоря уже о вертолетах, не все самолеты пригодны для полетов на больших скоростях.

1) посредством которого, при помощи которого (когда относится к существительному)

Ex. an e.m.f. whereby an electrical field is set up...

Ex. In an ion rocket the ions are pushed backward, whereby rocket drives itself forward.

13. to put it in another way

Ex. In operation all computers accept input symbols and produce or, to put it in another way, release output symbols.

Словосочетания, близкие по значению:

in other words
in plain words
more simply
to be more accurate
to be specific
more specifically
more properly

ЭДС (электродвижущая сила), при помощи которой создается электрическое поле...

2) благодаря чему, посредством чего (когда относится ко всему предыдущему высказыванию)

В ионной ракете ионы отбрасываются назад, благодаря чему ракета движется вперед.

иначе говоря (Досл. «если выразить это другим путем»)

Во время работы все счетно-решающие устройства принимают входные символы и производят или, иначе говоря, выдают выходные символы.

другими словами
по правде говоря
проще говоря

точнее говоря, точнее

возникать, появляться

Много трудностей возникает при решении таких проблем, как проблема межпланетных путешествий. подниматься, возникать

поднимать

звездный

спектр звезды

межзвездный

межзвездные магнитные поля

14. arise [ə'raɪz] (arose, arisen) *v*

Ex. Many difficulties arise in solving such problems as interplanetary travel.

* rise [raɪz] (rose, risen) *v*
* raise [reɪz] *v*

15. stellar ['stelə] *a*

Ex. stellar spectrum

interstellar *a*

Ex. interstellar magnetic fields

16. disturbance

disturb [dɪs'tə:b] *v*

Ex. The attraction of planets disturbs the course of comets.

* interfere [,ɪntə'fɪə] *v*
disturbance
[dɪs'tə:bəns] *n*

Ex. magnetic disturbance
disturbances *n pl*

Ex. atmospheric disturbances

* interference *n*

17. trap

trap [træp] *n*

Ex. ion trap

trap *v*

Ex. to trap radiation

* capture *v*

18. initial [ɪ'nɪʃəl] *a*

Ex. initial stage

initiate [ɪ'nɪʃeɪt] *v*

Ex. The October Revolution initiated a new stage in world

нарушать (что-л.), возмущать, создавать помехи

Сила притяжения планет изменяет (нарушает) траекторию полета комет.

мешать, препятствовать

1) возмущение

магнитное возмущение

2) помехи

атмосферные помехи

помехи, интерференция

ловушка

ионная ловушка

улавливать

улавливать излучение

захватывать, улавливать

начальный, первоначальный

начальный период

положить начало, начать

Октябрьская революция положила начало новой эпохе в мировой

history.

- * begin *v*
- * start *v*

19. neighbourhood

neighbour! ['neɪbə] *n*

Ex. The moon is our nearest neighbour in space.
neighbour *v*

Ex. The airfield neighboured the wood.

neighbouring

['neɪbərɪŋ] *a*

Ex. neighbouring countries
neighbourhood

['neɪbəhud] *n*

in the neighbourhood of

Ex. The population of the city is
in the neighbourhood
of 100,000.

* about *prep*

* approximately *adv*

20. couple ['kʌpl] *n*

couple *v*

Ex. coupled circuits

* unite *v*

* connect *v*

21. turbulent ['tə:bjulənt] *a*

Ex. turbulent current

turbulence ['tə:bjuləns] *n*

* disturbance *n*

22. so to say

Ex. Particle accelerators are, so to say, the heavy artillery of the atomic world.

Словосочетание, близкое по значению:

so to speak

23. interchange

inter- ['ɪntə] *pref*

change [tʃeɪndʒ] *n*

→ interchange [ɪn'tɜːfənʃə] *n*

Ex. an interchange of energy

24. random ['rændəm] *a*

Ex. a random choice

* occasional *a*

25. net

net [net] *n*

Ex. network

net *a*

Ex. net weight

26. equilibrium [i:kwɪ'lɪbrɪəm] *n*

Ex. equilibrium value

истории.

начинать(ся)

начинать(ся); запускать (двигатель)

сосед(ка); соседний объект

Луна — наша ближайшая соседка в космосе.

граничить, быть расположенным рядом (с чем-л.)

Аэродром был расположен вблизи леса.

соседний, смежный

соседиё страны

соседство, близость

приблизительно, около

Население этого города составляет приблизительно 100 000 человек.

около

приблизительно

пара

соединять, связывать

связанные контуры

соединять(ся)

возмущенный, турбулентный, вихревой

турбулентный поток

возмущение, турбулентность, завихрение

возмущение

так сказать

Ускорители атомных частиц являются, так сказать, тяжелой артиллерией в мире атомов.

так сказать

меж-, между-, взаимно-

изменение, перемена, обмен

обмен, взаимообмен

(взаимный) обмен энергии

случайный, произвольный, беспорядочный

случайный выбор

случайный

сеть

сеть электрических линий

общий, суммарный, чистый (напр. вес)

чистый вес (вес нетто)

равновесие

постоянная величина равновесия

¹ В американской литературе принято написание neighbor.

27. **quantity** ['kwɔːntiti] *n*
Ex. quantity of heat
Ex. vector quantity
* amount *n*
* value *n*

28. **agreement**
agree [ə'griː] *v*
Ex. to agree to a proposal
Ex. The two scales agree exactly.
→ agreement [ə'griːmənt] *n*
Ex. to achieve agreement with experimental data

29. **speculation**
speculate ['spekjuleɪt] *v*
Ex. to speculate on the possible future of computers
→ speculation [spekj'u'leɪʃn] *n*
Ex. speculation as to the origin of the solar system

1) количество
количество тепла
2) величина
векторная величина
количество
величина

1) соглашаться
согласиться с предложением
2) соответствовать, совпадать
Обе шкалы точно совпадают.
1) соглашение
2) соответствие
достичь соответствия с экспериментальными данными

размышлять, думать, делать
предположения, строить гипотезы
делать предположения о
применении счетно-решающих устройств в будущем
догадка, предположение, гипотеза

гипотеза о происхождении
солнечной системы

Дополнительный список слов и словосочетаний по теме урока

Слова и словосочетания, выражающие вероятность:

in all probability
Ex. In all probability a detailed knowledge of this subject will be of great importance. presumably say

Обороты (в форме главных предложений):

It is likely that...
We feel that...
We assume that...
It is assumed that...
We believe that...
It is our belief that...
It is (commonly) supposed that...
There is a (reasonable) chance that...

по всей вероятности
По всей вероятности, подробные сведения по этому вопросу будут иметь важное значение.
по-видимому скажем

По-видимому...
Нам кажется, что...
Мы полагаем, что...
Предполагают, что...
Мы полагаем, что...
Обычно предполагают, что...
Возможно (есть все основания полагать), что...

Слова и словосочетания, дающие оценку высказывания с точки зрения его желательности или нежелательности:

strange enough
strange to say
happily ['hæpɪlɪ] *adv*
Ex. The explosion, happily, took place far from the city.

удивительно, что
странны, что
к счастью
К счастью, взрыв произошел далеко от города.

Обороты, выражающие ссылку на общепризнанность мысли или действий:

It is well (commonly) known that...	} Общезнвестно, что...
It is common knowledge that...	
It has long been an accepted fact that...	Давно признано, что...
It is generally realized that...	Широко известно (понято), что...
It has been (generally) established that...	
Ex. It is commonly known that the wing creates lift.	Установлено (известно), что...
	Общезнвестно, что крыло создает подъемную силу.

Урок двенадцатый

1. contemporary

[kən'tempərətɪ] *a*

Ex. the contemporary science

* present *a*

* current *a*

* modern *a*

contemporary *n*

Ex. Gagarin and Titov are our contemporaries.

современный

современная наука

настоящий, современный

текущий, современный

современный

современник

Гагарин и Титов — наши современники.

быстрый

человек, работающий быстро

быстрый, скорый

быстрый

быстрый, скорый

2. swift

[swif] *a*

Ex. a swift worker

* fast *a*

* quick *a*

* rapid *a*

ставить, устанавливать

излагать

подробно изложить вопрос

излагать, выдвигать

Цель этой статьи состоит в том, чтобы изложить принципы, на которых основана работа генератора.

выдвигать, продвигать

предложить новый способ

устанавливать, создавать

приводить в движение

дорога, путь

путь к знанию

путь, дорога

3. set out

set [set] (*set*) *v*

set out ['set 'aʊt] *v*

Ex. to set out a problem in detail

set forth ['set 'fɔ:θ] *v*

Ex. It is the purpose of this article to set forth the principles which are the basis of the generator.

set forward

['set 'fɔ:wəd] *v*

Ex. to set forward a new method

* set up ['set 'ʌp] *v*

* set in motion

4. road

[rəʊd] *n*

Ex. the road to knowledge

* way *n* }

* path *n* }

5. haphazard

['hæp'haɪzəd] *a*

Ex. haphazard observations

* random *a*

6. consistent

[kən'sɪstənt] *a*

Ex. a consistent theory

случайный

случайные наблюдения

случайный

1) последовательный, логичный, стройный

2) согласующийся, не противоречащий

Ex. theories consistent with facts

7. approve [ə'pru:v] *v*
Ex. to approve the choice

Ex. a hypothesis approved by experimental data

approval [ə'pru:v'l] *n*
Ex. to meet with approval

8. incorporate [in'kɔ:pəreɪt] *v*
Ex. to incorporate new facts in the account

9. valid ['vælid] *a*

Ex. a valid argument

Ex. The equations are valid in regard to static fields.

validity [væ'lidɪtɪ] *n*

10. escape [ɪ'skeɪp] *v*

→ Ex. to escape detection

escape [ɪ'skeɪp] *n*
Ex. the escape of a rocket out into space

Ex. This was a satisfactory escape.

11. superiority

superior [sju:pɪ'reɪər] *a*
Ex. superior performance to be superior

superiority [sju:pɪ'reɪtɪ] *n*
Ex. the superiority of the U.S.S.R. in the guided missile world

12. joint

join [dʒɔɪn] *v*
joint [dʒɔɪnt] *a*
Ex. joint efforts

join [dʒɔɪn] *n*
Ex. a joint in a pipe

13. sum [sʌm] *n*
Ex. a sum of one thousand dollars

Ex. a sum total

summary ['sʌmtərɪ] *n*
Ex. a summary of the report

* to sum up
* in sum
* in summary
* to summarize

14. splendid ['splendɪd] *a*
Ex. a splendid idea

15. innumerable

number *n*
numerable ['nju:mərəbl] *a*

теории, согласующиеся с фактическими данными

1) одобрять
одобрить выбор

2) подтверждать
гипотеза, подтверждаемая экспериментальными данными
одобрение
получить одобрение

1) включать, охватывать
включить новые данные в отчет

2) встраивать
правильный, обоснованный, имеющий силу
обоснованный довод
Данные уравнения являются правильными для статических полей.

правильность, обоснованность

1) вырываться, выходить, отрываться

2) избегать, ускользать
избежать обнаружения

1) выход, отрыв
выход ракеты в космическое пространство

2) выход (решение)
Это было удовлетворительное решение вопроса.

1) лучший, высшего качества
лучшая характеристика
превосходить
превосходство
превосходство Советского Союза в области управляемых ракет

соединять, присоединять
соединенный, общий, совместный
совместные усилия
соединение, место соединения
место соединения в трубе

сумма, количество
сумма в 1000 долларов

общий итог, сумма
краткое изложение, аннотация, обзор
краткое изложение доклада

суммируя вышесказанное

прекрасный, отличный, великолепный
прекрасная идея

число, количество
исчислимый

	Innumerable [ɪ'nu:mrəbl] <i>a</i> numerous [nju:mrəs] <i>a</i> Ex. numerous slight instruments numerical [nju:'merɪkl] <i>a</i> Ex. numerical data numerically <i>adv</i> Ex. to express the relation numerically	бесчисленный многочисленный многочисленные пилотажные приборы числовой, цифровой цифровые данные в цифрах, в числах выразить соотношение в цифрах
16.	domination dominate ['dɒmɪneɪt] <i>v</i> Ex. This theory dominates the science of thermodynamics. dominant ['dɒmɪnənt] <i>a</i> domination [dɒmɪ'neɪʃn] <i>n</i> Ex. Physics succeeded in achieving the complete domination of the phenomenon.	господствовать, преобладать, доминировать Эта теория преобладает в термодинамике. господствующий, преобладающий господство, преобладание, владение Физике удалось полностью объяснить данное явление. (Досл. «Физике удалось достичь полного владения данным явлением»)
17.	sphere [sfɪə] <i>n</i> Ex. the sphere of influence	сфера, круг, поле деятельности сфера влияния
18.	endeavour [ɪn'deəvə] <i>n</i> Ex. In an endeavour to Investigate the new phenomenon... • effort <i>n</i> Ex. different fields of human endeavour	1) попытка, стремление, усилие В попытке (стремлении) исследовать новое явление... усилие, попытка 2) область (науки, исследования, деятельности) различные области человеческой деятельности
19.	novel ['nɔvl] <i>a</i> Ex. a novel idea	новый новая идея
20.	interpret [ɪn'terprɪt] <i>v</i> Ex. an entirely novel manner of interpreting the phenomenon of photoelectricity • explain <i>v</i> Interpretation [ɪn,ɪp're:tɪteɪʃn] <i>n</i>	объяснять объяснять, толковать, понимать совершенно новый метод объяснения явления фотоэлектричества
21.	await [ə'weɪt] <i>v</i> Ex. to await new achievements in science • wait <i>v</i> • expect <i>v</i>	объяснять истолкование, объяснение, понимание ждать, ожидать ожидать новых достижений в науке ждать 1) ожидать 2) предполагать
22.	hide [haɪd] (hid, hidden) <i>v</i> Ex. The surface of Venus is hidden under a mask of dense clouds.	скрывать(ся), прятать(ся) Поверхность Венеры скрыта покровом густых облаков.

СПРАВОЧНИК

ИНФИНТИВ И ИНФИНТИВНЫЕ КОНСТРУКЦИИ

Формы инфинитива

§ 1. В английской научно-технической литературе инфинитивы и инфинитивные конструкции используются очень широко. Встречаются следующие формы инфинитива:

Форма инфинитива	Залог	
	действительный	страдательный
неопределенная	to discuss	to be discussed
продолженная	to be discussing	
перфектная	to have discussed	to have been discussed

Из указанных форм инфинитива наиболее часто используются неопределенная и перфектная формы (как действительного, так и страдательного залога). Продолженная форма употребляется сравнительно редко.

Перевод форм инфинитива на русский язык зависит от функции, которую они выполняют в предложении. Рассмотрим эти функции более подробно.

Синтаксические функции инфинитива

Инфинитив в функции подлежащего

§ 2. Инфинитив, стоящий в начале предложения перед глаголом-сказуемым (вместе с относящимися к нему пояснительными словами), выполняет функцию подлежащего. Инфинитив в этой функции встречается в научно-технической литературе довольно редко. Обычно он переводится на русский язык инфинитивом или отглагольным существительным:

To find the mass of the electron was then a difficult task. Определить массу электрона в то время было трудной задачей (Определение массы электрона...).

Инфинитив в функции подлежащего может быть передан также русским инфинитивом с союзом «чтобы», при этом производится некоторая перестройка

предложения и замена глагола-сказуемого другим, подходящим по смыслу глаголом. Сравните возможные способы перевода инфинитива:

To move from one planet to another means to overcome gravitational forces...

Переместиться с одной планеты на другую значит преодолеть гравитационные силы...

Для того чтобы переместиться с одной планеты на другую, необходимо преодолеть гравитационные силы...

Инфинитив в функции обстоятельства цели

§ 3. Инфинитив, стоящий в начале предложения перед подлежащим или в конце предложения (где-то после сказуемого или дополнения), вместе с относящимися к нему пояснительными словами выполняет функцию обстоятельства цели и отвечает при переводе на вопрос «для чего?», «для какой цели?».

В этой функции инфинитив переводится на русский язык инфинитивом с союзом «(для того) чтобы» или отглагольным существительным с предлогом «для»:

To define accurately the environmental parameters a test chamber was utilized which...

Much further study is required to provide data that...

Для того чтобы точно определить параметры окружающей среды, была использована камера, которая... (Для точного определения параметров...).

Требуется провести дополнительное исследование для того, чтобы получить данные, которые...

Иногда перед инфинитивом в функции обстоятельства цели стоят союзы *In order — «(для того) чтобы» или so as — «с тем чтобы»:*

In order to form a sort of artificial ionosphere, usable for communication purposes it is necessary...

Для того чтобы создать нечто вроде искусственной ионосферы, которую можно использовать для целей связи, необходимо...

Если инфинитив в функции обстоятельства цели употребляется без союза и стоит в начале предложения, то он внешне ничем не отличается от инфинитива в функции подлежащего.

Сравните:

Инфинитив в функции обстоятельства цели

To learn the principles of lift the scientists had to study the characteristics of air streams.

Для того чтобы изучить принципы возникновения подъемной силы, учёные должны были изучить особенности воздушных потоков.

Чтобы отличить инфинитив в функции подлежащего от инфинитива в функции обстоятельства цели (а следовательно, и правильно его перевести), необходимо установить, имеется ли среди слов, стоящих после инфинитива (кроме существительного, являющегося пояснительным словом к этому инфинитиву), другое слово, которое может выполнять функцию подлежащего. Если такого слова нет — инфинитив выполняет функцию подлежащего, если это слово есть — функцию обстоятельства.

Инфинитив в функции подлежащего

To learn the principles of lift was very important.

Изучение принципов возникновения подъемной силы имело очень большое значение.

Инфинитив в функции обстоятельства следствия

§ 4. Инфинитив в функции обстоятельства следствия обычно занимает место ближе к концу предложения. Его можно опознать по наречиям *too* — «слишком», *only* — «только», *enough* и *sufficiently* — «достаточно»,

such — «такой», so — «настолько», «так» или прилагательному sufficient — «достаточный», предшествующим слову, за которым следует инфинитив.

Инфинитив следствия передается с помощью русского инфинитива с союзом «чтобы» или «что». Нередко в переводе возникает потребность ввести слова «может», «можно», «могли»:

The changes of stars are too slow to detect by mere observations.

The mass of an electron is so small as to be neglected...

Изменения, которые претерпевают звезды, протекают слишком медленно, чтобы их можно было обнаружить путем наблюдений.

Масса электрона настолько мала, что ее можно пренебречь по сравнению...

Заметьте, если инфинитив соотносится со словом so или such, то перед инфинитивом обычно стоит союз as.

Инфинитив в функции обстоятельства последующего действия

§ 5. Инфинитив в функции обстоятельства последующего действия занимает место после сказуемого (или дополнения). Инфинитив в этой функции представляет трудность при переводе, потому что он может ошибочно быть принят за обстоятельство цели. Только смысл всего предложения позволяет определить, является ли инфинитив обстоятельством цели или последующего действия.

Сравните:

Инфинитив в функции обстоятельства цели

We use the ammeter to measure the current.

Мы используем амперметр, чтобы измерять силу тока.

Инфинитив в функции обстоятельства последующего действия

Elements chemically combine to form compounds.

Элементы химически соединяются друг с другом и образуют (образуя) соединения.

На русский язык инфинитив в функции обстоятельства последующего действия переводится обычно деепричастием или личной формой глагола, которая является как бы вторым сказуемым и присоединяется к первому союзом «и»:

An oxygen atom combines with two hydrogen atoms to form a molecule of water.

Атом кислорода соединяется с двумя атомами водорода, и образуется молекула воды (образуя молекулу воды).

Инфинитив в функции определения

§ 6. Инфинитив, стоящий справа от существительного (или его заменителя — one, that и др.), выполняет функцию определения и отвечает при переводе на вопрос «какой».

1. Очень часто инфинитив в этой функции имеет форму страдательного залога.

Такой инфинитив обычно имеет модальный оттенок необходимости или значение будущего времени и переводится на русский язык придаточным определительным предложением, начинаящимся словом «который», причем в состав сказуемого вводятся слова «необходимо», «следует» или же глагол-сказуемое ставится в будущем времени:

The next kind of waves to be discussed are the more complicated waves.

Следующим видом волн, которые необходимо рассмотреть, являются более сложные волны.

2. Инфинитив в форме действительного залога может и не иметь оттенка

модальности. В этом случае он переводится также определительным придаточным предложением, но без добавления слов «следует», «необходимо»:

Equipment to operate under water Оборудование, которое работает под водой, было сконструировано...

3. Инфинитив, следующий за существительными типа *ability* — «способность», *desire* — «желание», *attempt* — «попытка», передается русским инфинитивом:

Because of their ability to produce gas streams having... Благодаря их способности создавать потоки газа, обладающие...

§ 7. Инфинитив в функции определения, стоящий после слов *the first*, *the last* (*the first to Invent...*, *the last problem to be considered...*), не имеет модального оттенка. Он переводится определительным предложением, вводным словами «который» или «кто», время глагола-сказуемого этого предложения зависит от формы времени глагола в главном предложении:

The first to achieve a chain reaction were the Joliot-Curies. Первыми, кому удалось осуществить цепную реакцию, были супруги Жолио-Кюри.

Инфинитивные конструкции

Инфинитив как часть сказуемого

§ 8. Инфинитив, стоящий за личной формой глаголов определенной группы (список этих глаголов приводится ниже), образует вместе с этой формой особого рода сказуемое.

Первый компонент такого сказуемого характеризует отношение автора к высказыванию (выражаемое в русском языке, например, вводными словами типа «по-видимому», «как известно», «как сообщают»), а второй компонент — инфинитив — обозначает действие, которое совершает подлежащее:

Radioactivity is known to be closely connected with...

Радиоактивность, как известно, тесно связана с...

Возможны два способа перевода такой конструкции. При первом способе порядок слов в предложении сохраняется, первый компонент переводится вводным словом (или предложением), второй — глаголом в личной форме:

Jupiter is believed to consist predominantly of solid hydrogen. Юпитер, как предполагают, состоит в основном из твердого водорода.

При втором способе перевода происходит изменение порядка слов: первый компонент переводится предложением типа «Предполагают, что...», «Известно, что...», выносится вперед и ставится перед подлежащим. Затем переводится оставшаяся часть предложения:

The meteoroids of mass greater than about 10^{-3} grams are believed to have velocities about 30 kilometers per second. Предполагают, что метеориты с массой больше чем 10^{-3} граммов обладают скоростью около 30 км/сек.

Although such types of semiconductors are expected to be less sensitive to radiation than...

Хотя предполагают, что полупроводники такого типа будут менее чувствительны к радиации, чем...

Необходимо отметить, что если в качестве первого компонента конструкции употребляются глаголы, которые передаются словами «по-видимому», «вероятно», «кажется», «оказывается» (например, *seem*, *appear*, *be likely* и т. п.), то во многих случаях союзы «как» и «что» в русском предложении могут опускаться:

The success of the experiment seems to show...

Обнадеживающие результаты, полученные в ходе эксперимента, по-видимому, показывают...

При выборе того или иного способа перевода следует иметь в виду, что в тех случаях, когда второй компонент выражает действие или состояние, противоречащее нашим современным представлениям об этом действии или состоянии, возможен лишь способ перевода, при котором первый компонент выносится на первое место в предложении:

Heat was thought to be a material substance.

Этот же способ перевода используется, когда в состав сказуемого входит модальный глагол или некоторые другие глаголы, например, *expect*.

Глаголы и словосочетания, употребляющиеся в качестве первого компонента такого сказуемого, необходимо запомнить, так как они помогают опознать конструкцию в предложении. Их можно разделить на три группы.

1. Глаголы, употребляющиеся в данной конструкции только в страдательном залоге:

to think	(is thought)	полагать, думать
to believe	(is believed)	полагать, считать
to assume	(is assumed)	полагать, предполагать
to suppose	(is supposed)	полагать, предполагать
to expect	(is expected)	ожидать, предполагать
to consider	(is considered)	считать, полагать
to estimate	(is estimated)	подсчитывать, устанавливать
to say	(is said)	говорить, сообщать, утверждать
to report	(is reported)	сообщать
to state	(is stated)	сообщать, утверждать
to know	(is known)	знать, устанавливать
to find	(is found)	находить, устанавливать
to show	(is shown)	показывать
to observe	(is observed)	наблюдать
to see	(is seen)	видеть

2. Глаголы, употребляющиеся в данной конструкции только в действительном залоге. Эта группа глаголов немногочисленна:

to seem	казаться
to appear	оказываться; казаться
to prove	оказываться
to happen	оказываться

3. Словосочетания, используемые в качестве первого компонента:

to be likely — «вероятно»; *to be unlikely* — «маловероятно», «едва ли»; *to be certain* и *to be sure* — «иссомненно».

§ 9. Между первым и вторым компонентами сказуемого может иногда стоять группа существительного с предлогом или наречие. В результате такого включения элементы конструкции отдаляются друг от друга, что затрудняет опознавание конструкции.

При переводе эта группа слов относится к первому компоненту конструкции:

The ratio of charge to mass for these particles was found by magnetic deflection measurements to be about...

Отношение заряда к массе для данной категории частиц, как было установлено путем измерения отклонений этих частиц в магнитном поле, составляет около...

§ 10. Глаголы, являющиеся первыми компонентами сказуемого такого типа, могут стоять в любом времени. Это следует учитывать при переводе:

These forms of radiant energy have been found to travel through space with the speed of...

Такие формы лучистой энергии, как было установлено, распространяются в пространстве со скоростью...

These compounds were shown to be composed of...

These machines are known to be called particle accelerators.

§ 11. При переводе сказуемого такого типа следует обращать внимание также на форму инфинитива. Неопределенная форма инфинитива (типа to discuss) передается с помощью глаголов настоящего или будущего времени:

These metals have been found to possess many interesting and useful physical properties which...

Nuclear rockets are likely to be used for...

Перфектная форма (типа to have discussed) переводится на русский язык глаголом в прошедшем времени:

The first attempt to measure the speed of propagation of light is believed to have been undertaken by Galileo.

Продолженная форма (типа to be discussing) переводится глаголом в настоящем времени:

A particle is said to be moving with variable velocity when...

§ 12. В сказуемое такого типа могут входить модальные глаголы (обычно can, may, might). При переводе модальный глагол относится к первому члену конструкции:

A metal may be considered to consist mainly of metal ions and free electrons of high mobility.

§ 13. В тех случаях, когда при сказуемом имеется отрицание, оно при переводе чаще всего ставится перед вторым членом конструкции:

The experiment does not seem to give the results supporting the view.

Эти соединения, как было показано, состоят из...

Такого рода установки, как известно, называются ускорителями частиц.

Было установлено, что эти металлы обладают многими интересными и очень полезными физическими свойствами, которые...

Ракеты на ядерном топливе, по-видимому, будут применяться для...

Первая попытка измерить скорость распространения света, как полагают, была предпринята Галилеем.

Говорят, что частица движется с переменной скоростью, когда...

Можно считать, что любой металл состоит в основном из ионов металла и свободных электронов, обладающих высокой подвижностью.

Этот эксперимент, по-видимому, не дает результатов, подтверждающих эту точку зрения.

§ 14. Глаголы to assume, to appear, to consider, to happen и to prove приобретают в данной грамматической конструкции вполне определенное значение, часто отличное от того, которое они имеют, когда выступают в других сочетаниях:

Глагол	Значение глагола в обороте «инфинитив как часть сказуемого»	Значение глагола в других синтаксических сочетаниях
assume	полагать	принимать, приобретать (форму), полагать
consider	считать	рассматривать; считать
appear	оказываться, казаться	появляться; казаться
happen	оказываться	случаться
prove	оказываться	доказывать; оказываться

Инфинитив как часть сложного дополнения

§ 15. Если инфинитив стоит после существительного (или местоимения), которому предшествует глагол определенного типа, так называемый вводящий глагол (список таких глаголов дается ниже), то инфинитив вместе с существительным образует сложное дополнение.

Такое дополнение переводится на русский язык придаточным предложением с союзами «что», «чтобы» или «как». При переводе существительное-дополнение становится подлежащим, а инфинитив — сказуемым русского предложения:

If we want two manned vehicles to meet in space...

Если мы хотим, чтобы в космосе встретились два пилотируемых корабля...

Чаще всего сложное дополнение встречается после перечисленных ниже глаголов. Эти глаголы рекомендуется запомнить, так как они помогают опознать конструкцию в предложении:

to think	думать, полагать
to consider	считать, полагать
to believe	полагать
to assume	полагать, считать
to expect	ожидать, предполагать
to know	знать
to find	находить
to show	показывать
to prove	доказывать
to require	требовать
to see	видеть
to hear	слышать
to watch	наблюдать
to observe }	
to want	хотеть
to enable	давать возможность, позволять
to allow	позволять, давать возможность
to cause }	
to make	заставлять

Предложения со сложным дополнением, стоящим после глаголов *to enable* — «позволять», *to allow* — «позволять», *to cause* и *to make* — «заставлять», можно переводить без придаточного предложения:

Radiolocation enables the pilot to determine the position of an airplane in the air. Радиолокация дает возможность летчику определить местоположение самолета.

При этом если английский инфинитив имеет форму страдательного залога (типа *to be used*), то обычно приходится изменять порядок слов: сначала перевести инфинитив (формой действительного залога), а потом существительное-дополнение:

The decrease in the weight of the structure of the aeroplane enables more passengers to be carried.

Уменьшение веса конструкции самолета дает возможность взять («нести») больше пассажиров.

После глаголов *to make*, *to see*, *to hear* и *to watch* инфинитив не имеет частицы *to*:

The force that makes objects fall towards the earth is...

Сила, которая заставляет предметы падать на землю...

§ 16. Глаголы *to make* и *to cause* в тех случаях, когда за ними следует сложное дополнение, имеют значение «заставлять», «делать так, чтобы...».

Обычно глагол **to make** имеет значение «делать», а глагол **to cause** — «вызывать», «обусловливать», «быть причиной чего-л.»:

The magnetic field **causes** these particles **to develop** tremendous speeds. Магнитное поле заставляет эти частицы развивать огромную скорость.

What causes ionization in the upper layers of the Earth's atmosphere? Что вызывает ионизацию в верхних слоях атмосферы Земли?

§ 17. Глаголы, после которых употребляется сложное дополнение, могут стоять в неличной форме, то есть в форме инфинитива, причастия или герундия:

The force **making** electrons move from one point to another... Сила, заставляющая электроны двигаться из одной точки в другую...

Инфинитивная конструкция с предлогом **for**

§ 18. Эта конструкция состоит из трех компонентов: **for**+существительное+инфинитив. Чаще всего в научно-технической литературе эта конструкция употребляется в функции обстоятельства цели (или следствия) и может стоять как в начале, так и в конце предложения.

Конструкция переводится, как правило, придаточным предложением с союзом «(для того) чтобы», подлежащим которого становится существительное, а сказуемым — инфинитив, который передается формой глагола прошедшего времени:

It is important **for** the model **to be** accurate **but** simple enough. Важно, чтобы модель была точной, но достаточно простой.

Конструкция может быть переведена также обстоятельственным оборотом «чтобы+инфинитив» или оборотом «для+существительное», образованным на основе инфинитива.

Часто при переводе а состав сказуемого или перед инфинитивом вводятся слова «можно было» или «мог» («могла», «могли»):

The satellite of Neptune is too far away **for** its size **to be** known with any accuracy. Спутник Нептуна находится на слишком большом расстоянии, чтобы можно было с достаточной точностью определить его размеры (для определения...)

Конструкции может предшествовать союз **In order** — «для того чтобы», при этом способ ее перевода не изменяется:

In order **for** the mathematical theory **to be** applicable to an engineering problem.... Чтобы эту математическую теорию можно было применить для решения технической проблемы...

§ 19. Частица **to**, относящаяся к инфинитиву, стоит обычно непосредственно перед инфинитивом (например, **to review**).

В некоторых случаях между частичей **to** и инфинитивом ставится наречие.

It is appropriate **here** **to** briefly review the basic principles of this engine. Здесь уместно кратко остановиться на основных принципах действия этого двигателя.

ПРИЧАСТИЕ И ПРИЧАСТНЫЕ ОБОРОТЫ

Формы причастий

§ 20. В английской научно-технической литературе причастия и причастные обороты используются очень широко. Встречаются следующие формы английских причастий.

Форма причастия	Залог	
	действительный	страдательный
причастие I	using	being used
причастие II		used
перфектное прича- стие	having used	having been used

Из всех форм причастия наиболее употребительными являются формы причастия I (using и being used) и причастие II (used).

Перевод причастия зависит от функции, которую оно выполняет в предложении.

Синтаксические функции причастия

Причастие в функции определения

§ 21. В английском языке причастие может выполнять функции как левого, так и правого определения.

Причастие — левое определение. Причастие, стоящее слева от существительного — между определителем и существительным (если имеется определитель), выполняет функцию левого определения, отвечающей на вопрос «какой?» и переводится обычно русским причастием.

В функции левого определения употребляются только простые формы причастий (типа using и used).

1. Причастие I (типа using) в этой функции переводится на русский язык с помощью существительного залога настоящего или прошедшего времени («использующий», «использовавший»):

The acceleration of all falling bodies is the same, independent of their size, shape or mass. Ускорение всех падающих тел не зависит от их размера, формы и массы.

2. Причастие II (типа used) переводится русским причастием страдательного залога настоящего или прошедшего времени («используемый», «использованный»):

Charged particles interact with...

Заряженные частицы взаимодействуют с...

3. В некоторых случаях причастие в функции левого определения лучше передавать русским отглагольным существительным:

The decreased Intensity of cosmic radiation in that region...

Уменьшение интенсивности космического излучения в этой области...

4. Некоторые причастия II вследствие изменения значения переходят в разряд прилагательных. Для их передачи обычно используют русские прилагательные:

repeated tests
derived products

повторные испытания
побочные продукты

Причастие — правое определение. Причастие, стоящее справа после существительного (или его заменителя — that, those), выполняет

ет функцию правого определения. В этом случае после причастий могут стоять относящиеся к нему пояснительные слова.

1. Причастие I (*using*) и причастие II (*used*) как правое определение переводятся на русский язык соответствующей формой русских причастий или определительным придаточным предложением:

Rutherford and Soddy worked out a theory explaining the phenomenon of radioactivity.

A recent study of quasars carried out with the aid of the 200-inch telescope has provided evidence that...

Причастие, не имеющее справа пояснительных слов, при переводе чаще всего переносится влево от существительного:

The results obtained showed no evidence of a marked increase of intensity of solar radiation.

2. Сложная форма причастия I (*being used*) в функции правого определения переводится, как правило, страдательным причастием настоящего времени (типа «используемый») или определительным придаточным предложением:

Rockets being used for high altitude research are equipped with special instruments.

3. Следует иметь в виду, что причастие — правое определение не всегда следует непосредственно за существительным, к которому оно относится. Между ними могут находиться наречия или обстоятельственные слова (например, *thus far, so far* — «до сих пор» и др.):

The high gas temperature already mentioned results from the combustion of fuel and oxidizer.

В таких случаях для того, чтобы при переводе не упустить связь причастия с существительным, рекомендуется временно пропустить наречие, перевести сначала причастие и только после этого — пропущенное наречие.

Резерфорд и Содди разработали теорию, объясняющую (которая объясняет) явления радиоактивности.

Исследования квазаров, проведенные с помощью 200-дюймового телескопа, показали, что...

Полученные результаты не свидетельствуют о заметном увеличении интенсивности солнечной радиации.

Ракеты, используемые (которые используются) для проведения исследований на больших высотах, оборудуются специальными приборами.

Высокая температура газа, о которой мы уже говорили, возникает в результате сгорания топлива и окислителя.

Причастие в функции обстоятельства

§ 22. Английское причастие, стоящее в начале или в конце предложения (часто перед определителем существительного), выполняет функцию обстоятельства.

Такое причастие тесно связано по смыслу со сказуемым предложения и отвечает на вопрос «когда?», «при каком условии?», «по какой причине?» совершается действие, обозначенное глаголом-сказуемым. После причастия могут стоять относящиеся к нему пояснительные слова, образующие вместе с причастием обстоятельственный причастный оборот.

1. Причастие I в функции обстоятельства с относящимися к нему словами переводится обычно деепричастным оборотом, обстоятельственным придаточным предложением (обычно с союзом «когда» или «если») или предложным оборотом «при+существительное»:

Flowing through a conductor the current heats it.

Проходя через проводник, ток нагревает его (при прохождении через проводник...; Когда ток проходит через проводник...).

Часто перед причастием I в этой функции стоят союзы *when* — «когда» или *while* — «когда», «хотя». При этом способы перевода остаются теми же:

When flying in the troposphere...

При полетах в тропосфере... (Когда полет протекает в тропосфере..., совершая полет в тропосфере...)

2. Причастие II (типа *used*), как правило, употребляется в функции обстоятельства с союзами. Такими союзами являются: *when* — «когда», *while* — «когда», *though* (although) — «хотя», *unless* — «если... не», *once* — «когда»; «если».

Причастие II в этой функции обычно переводится придаточным обстоятельственным предложением или предложным оборотом «при + существительное»:

This substance darkens when bombarded with electrons.

Это вещество темнеет при бомбардировке его электронами (...когда его бомбардируют электронами).

Вместе с тем возможны случаи, когда перед причастием II в функции обстоятельства вообще отсутствует союз. Способы перевода причастия остаются прежними:

The unit of charge is that charge which, placed one centimetre from an identical charge in air, repels it with a force of one dyne.

Единицей заряда принято считать такой заряд, который, если его расположить на расстоянии в один сантиметр от одноименного заряда в воздухе, отталкивает его с силой в одну дину.

3. Сложные формы причастия (типа *being used*, *having used* и *having been used*) в функции обстоятельства употребляются без союза.

Страдательное причастие (типа *being used*) можно переводить либо придаточным обстоятельственным предложением, либо, в некоторых случаях, деепричастнем (типа «будучи использован»):

Being heated magnetized steel loses its magnetism.

Если намагниченную сталь нагревают, она размагничивается (Будучи нагретой, намагниченная сталь размагничивается).

Перфектная форма причастия обычно переводится деепричастием совершенного вида, придаточным обстоятельственным предложением с союзом «после того как» (глагол-сказуемое такого предложения будет иметь форму прошедшего времени) или существительным с предлогом «после»:

Having discussed characteristics of these rays we shall now be concerned with the problem of identifying them.

Обсудив характеристики этих лучей, рассмотрим проблему их обнаружения (После того, как мы обсудили...; После обсуждения...).

Причастные обороты

Обособранный причастный оборот

§ 23. Этот оборот состоит из двух основных компонентов: существительного (или его заменителей — местоимений *this*, *that*, *each*, *one* и др. или вводящего слова *there*) и причастия, находящегося справа от существительного, и отделяется от основной части предложения запятой. Оборот может стоять как в начале, так и в конце предложения.

The friction of the air producing much heat...

Так как при трении о воздух выделяется большое количество тепла...

..., the electrons moving round the nucleus.

...принцип электронов движутся вокруг ядра.

В научной литературе преобладают обороты, расположенные в конце предложения.

Опознавание обособленного причастного оборота в предложении может представлять известные трудности в тех случаях, когда между компонентами оборота вклинивается длинная цепочка пояснительных слов (среди них могут быть и причастия):

The weight of all the molecules comprising a substance being the same...

Связь между отдельными словами, входящими в состав оборота, в этом случае можно установить только в процессе перевода.

При переводе оборота важно учитывать его место в английском предложении.

1. Оборот, стоящий в начале предложения, обычно переводится обстоятельственным придаточным предложением, которое вводится союзами «так как», «поскольку», «если» или «когда», «после того как»:

The Sun being near the zenith, its rays are nearly vertical.

The Earth's orbit being an ellipse, the distance between the Earth and the Sun constantly changes.

Выбор того или иного союза зависит от того, как обособленный оборот по смыслу связан с основной частью предложения (то есть, отвечает ли он при переводе на вопрос «когда?», «по какой причине?» или «при каких условиях?») совершается действие). Подлежащим предложения при переводе становится существительное — первый компонент оборота, сказуемым — глагол, образованный на основе причастия. Время глагола в данном предложении зависит от времени глагола-сказуемого основной части предложения. Перфектное причастие всегда переводится глаголом в прошедшем времени.

2. Оборот, стоящий в конце предложения, имеет сочинительную связь с основной частью предложения и переводится предложением, которое вводится союзами «причем», «а», «и», «но» или самостоятельным предложением без союза:

The nucleus is made up of neutrons and protons, the number of protons being equal to the number of electrons.

Так как вес молекул, составляющих вещество, одинаков...

Когда Солнце приближается к зениту, его лучи падают почти вертикально.

Поскольку орбита Земли представляет собой эллипс, расстояние между Землей и Солнцем непрерывно меняется.

Ядро состоит из нейтронов и протонов, причем число протонов равно числу электронов (или Ядро состоит из нейтронов и протонов. Число протонов равно числу электронов).

3. Наряду с обособленными причастными оборотами без предлога в научной литературе употребляются обособленные обороты, которые вводятся предлогом *with*:

The orbit of an Earth satellite may be approximated to an ellipse, with the centre of mass of the Earth being at one of its foci.

Орбиту спутника Земли можно приблизенно считать эллипсом, причем центр массы Земли расположен в одном из его фокусов.

К причастным оборотам с предлогом *with* относится все сказанное ранее об обособленных причастных оборотах без предлога.

Однако следует иметь в виду, что если такого рода оборот стоит в начале предложения, то, помимо указанных выше союзов, при переводе используется союз «теперь, когда».

With Industrialization going on at its present rate, the world's fuel reserves will be exhausted within the near future.

Теперь, когда экономика развивается такими темпами, мировые запасы топлива будут израсходованы в ближайшем будущем.

Причастные обороты с союзом as

§ 24. 1. Причастный оборот с союзом *as*, стоящий в начале или в конце предложения (где-то после сказуемого), часто указывает на связь с предшествующим или последующим высказыванием и передается на русский язык оборотом типа «как указывалось выше»:

As stated above, Pluto's time of rotation is $6^{1/2}$ days.

Как указывалось выше, время обращения планеты Плутон вокруг оси равно шести с половиной дням.

2. Определительный причастный оборот с союзом *as*, как и все определительные обороты, расположен справа от определяемого существительного. Он может переводиться двумя способами: соответствующим русским причастием (при этом союз *as* не переводится) или с помощью придаточного предложения, вводимого словами «в том виде, как...»:

This principle requires that mesons, as produced for example in cosmic rays, should be unstable.

Этот принцип требует, чтобы мезоны, в том виде как они возникают, например, в космических лучах, были неустойчивы (мезоны, возникающие, например, в космических лу- чах...).

Определительная конструкция «причастие + инфинитив»

§ 25. Конструкция обычно состоит из причастия II (глаголов определенного типа), и следующего за ним инфинитива.

В предложении данная конструкция следует непосредственно за существительным (или его заменителем) и является определением к этому существительному:

Out of 31 satellites existing in our solar system the only one known to have an atmosphere is Saturn's Titan.

Из 31 спутника, существующего в нашей солнечной системе, единственным, который, как известно, имеет атмосферу, является спутник Сатурна — Титан.

Конструкция переводится определительным придаточным предложением, при этом дополнительно вводится союзное слово «который» (оно ставится сразу же после существительного); причастие II передается вводными словами («как известно»), а инфинитив — глаголом в личной форме («имеет»).

В качестве первого компонента такой конструкции употребляются причастия от ограничного числа глаголов, входящих также в конструкцию «инфинитив — как часть сказуемого». Эти причастия необходимо запомнить, они помогают опознать конструкцию в предложении:

(ice) known	(to melt) ... (лед)	который, как известно	...(ает)
... found ...		который, как установлено	...
... thought ...		который, как полагают	...
... supposed ...		который, как полагают	...
... expected ...		который, как ожидают	...
... estimated ...		который, как подсчитано	...

Первым компонентом может быть также прилагательное *likely* и причастие I *appearing*, которые переводятся в данном случае словами «вероятно», «по-видимому»:

To study the conditions likely to be encountered in flight...

Для изучения условий, с которыми, вероятно, придется встретиться в полете...

ГЕРУНДИЙ

§ 26. В русском языке нет грамматической формы, аналогичной герундию. По внешнему виду он похож на причастие I.

Герундий обозначает действие в самом общем виде (*heating* — «нагревание», *moving* — «движение»). Чаще всего герундий переводится на русский язык существительным или глаголом. Способ перевода герундия зависит не столько от той или иной его функции, сколько от его лексического значения и сочетаемости слов в русском языке.

Формы герундия

§ 27. Герундий имеет четыре формы. Они совпадают с формами причастия I. Наиболее часто употребляется простая форма типа *using*.

Форма герундия	Залог	
	действительный	страдательный
Неопределенная	using	being used
Перфектная	having used	having been used

Признаки герундия

§ 28. 1. Герундий можно опознать в предложении по следующим признакам: перед герундием слева стоит предлог, справа герундий граничит с артиклем (или другим определителем существительного):

By *reducing* the resistance...

Если после герундия нет артикля, по внешним признакам нельзя установить, является ли форма, оканчивающаяся на *-ing*, причастием или герундием:

For *converting* *electrical* *energy* *into* *mechanical* *energy* we use a special machine. Для превращения электрической энергии в механическую мы используем специальное устройство.

В подобных случаях задачу часто помогает решить контекст. Кроме того, можно попытаться перевести слово, оканчивающееся на *-ing*, причастием — определением к существительному (например, «для превращающейся электрической энергии в механическую»). Если такой перевод лишен смысла, то мы имеем дело с герундием и его следует переводить существительным («для превращения — чего» — электрической энергии в механическую»).

2. Если перед герундием нет предлога, его можно опознать (а следовательно, и отличить от причастия I) по функции в предложении. Герундий может выполнять функцию подлежащего и дополнения:

Heating the gas increases the speed of the molecules (подлежащее).

Gases and liquids return to their original form as soon as the applied force has stopped acting (дополнение).

Нагревание газа увеличивает скорость движения молекул.

Газы и жидкости принимают свою первоначальную форму, как только внешняя сила перестает действовать.

В функции дополнения герундий чаще всего употребляется после следующих глаголов и глагольных словосочетаний: *to begin*, *to start* — «начинать», *to finish* и *to stop* — «прекращать, переставать», *to keep (on)* — «продолжать», *to be worthwhile* — «стоить».

Некоторые синтаксические функции герундия

Герундий в функции подлежащего

§ 29. Герундий в этой функции стоит в начале предложения (без предлога). За герундием обычно следуют относящиеся к нему пояснительные слова (часто существительное, являющееся дополнением к герундию):

Cooling the aircraft engine **Охлаждение авиационного двигателя**
may be effected either by air or by ля может осуществляться воздухом
liquid. или жидкостью.

§ 30. Герундий в функции подлежащего внешне ничем не отличается от причастия I в функции обстоятельства (если причастие стоит в начале предложения).

Сравните:

Герундий в функции подлежащего

Heating the gas increases the speed of the molecules.

Нагревание газа увеличивает скорость движения молекул.

Причастие I в функции обстоятельства

Gaining or losing electrons, atoms become ions.

Приобретая или теряя электроны, атомы превращаются в ионы.

Для того чтобы различить эти формы (а следовательно, и правильно их перевести), необходимо установить, имеется ли в предложении еще какое-нибудь слово, кроме формы с окончанием -ing, которое может выполнять функцию подлежащего.

Если такого слова нет, значит сама глагольная форма выполняет функцию подлежащего и является герундием (пример слева).

При наличии такого слова глагольная форма выполняет функцию обстоятельства и является причастием I (пример справа). При этом следует иметь в виду, что существительное без предлога, стоящее непосредственно за глагольной формой с окончанием -ing (независимо от того, герундий это или причастие I), является дополнением к глагольной форме и его нельзя по этой причине принимать за подлежащее.

Герундий в функции левого определения

§ 31. Герундий в функции левого определения занимает место между артиклем и существительным:

The boiling temperature of water is 100° C. **Температура кипения воды равна 100° по Цельсию.**

Герундий в этом случае по виду нельзя отличить от причастия I, употребляемого в качестве левого определения.

Сравните:

Герундий в функции определения

The boiling temperature...
Температура кипения

Причастие I в функции определения

The boiling water...
Кипящая вода...

Поэтому рекомендуется сначала перевести существительное, а затем проверить, может ли стоящее перед ним слово (boiling) быть переведено причастием («температура — какая? — кипящая»). Поскольку такое сочетание в русском языке бессмысленно, слово boiling является герундием и его следует переводить существительным («температура — чего? — кипения»).

Герундий в функции обстоятельства

§ 32. Герундию в функции обстоятельства всегда предшествует предлог.

Перевод предлога перед герундием в этом случае не определяется предшествующим глаголом, существительным или прилагательным:

For determining and analysing the rocket performance... Для определения и анализа характеристик ракеты...

By varying the distance between... Помощью изменения расстояния между...

Чаще всего перед герундием в функции обстоятельства употребляются следующие предлоги: *by* — «путем», «при помощи», «посредством»; *for* — «для», *through* — «благодаря», «из-за»; *before* — «до»; *after* — «после»; *without* — «без». Предлог *in* перед герундием переводится предлогом «при», предлоги *on* и *upon* — «после», «при».

In making observations... При проведении наблюдений...
Upon returning to the Earth... После возвращения на Землю...

Перед герундием употребляются также сложные предлоги: *instead of* — «вместо», *in spite of* — «несмотря на», *in addition to* — «кроме», *because of* — «из-за», *with a view to* — «с целью» и некоторые другие.

Because of its having high resistance... Из-за того, что он (проводник) обладает большим сопротивлением...

Герундий в функции обстоятельства можно переводить или существительным с предлогом (как видно из примеров, приведенных выше), или деепричастием:

By thoroughly conducting the experiment we obtained... Тщательно проведя опыт, мы добились получения...

В последнем случае предлог, стоящий перед герундием, опускается. Исключение составляет предлог *without*, который переводится частицей «не»:

It is difficult to increase the efficiency of the engine without its becoming heavier. Трудно увеличить коэффициент полезного действия двигателя, не увеличивая его веса.

Способы перевода герундия

§ 33. Для перевода герундия используется:

1. Существительное:

The device for measuring the strength of the current is called ammeter.

By the end of the 18th century the method of making rockets had become immensely developed.

2. Инфинитив:

A switch is a device for making a gap in a circuit.

3. Деепричастие:

We can increase the current by reducing the resistance of the circuit.

4. Придаточное предложение, которое вводится союзом «то, что» в соответствующем падеже.

Прибор для измерения силы тока называется амперметром.

К концу 18 века метод изготовления ракет был в значительной степени усовершенствован.

Выключатель — это устройство, применимое для того, чтобы сделать в цепи разрыв.

Мы можем увеличить силу тока, снижая сопротивление цепи.

При этом, если между предлогом и герундием стоит притяжательное местоимение или существительное (в общем или притяжательном падеже), образующее вместе с герундием герундиальный оборот, то оно при переводе становится подлежащим, а герундий — сказуемым.

A solar sail derives its propulsive force from the pressure due to the sun's light falling on a sail.

Солнечный парус получает движущую силу за счет давления, вызванного тем, что на парус падает солнечный свет.

СОСЛАГАТЕЛЬНОЕ НАКЛОНЕНИЕ

§ 34. Сослагательное наклонение — это форма глагола-сказуемого. Оно употребляется в сообщениях о действиях не реальных, а лишь мысленно допускаемых.

В русском языке сослагательное наклонение выражается формой прошедшего времени с частицей «бы» (я бы сделал это, если бы...).

Формы сослагательного наклонения

§ 35. В английском языке существует два ряда форм сослагательного наклонения: простые и сложные. Как те, так и другие могут иметь форму действительного и страдательного залога.

Простые формы. Все глаголы имеют две простые формы сослагательного наклонения (одинаковые для всех лиц единственного и множественного числа).

Одна форма внешне совпадает с инфинитивом без частицы *to*:

They (I, you, he, she, it, we) take...

Они взяли бы...

They (I, you, he, she, it, we) be...

Они были бы...

Например:

It is necessary that an airplane be of light structure.

Необходимо, чтобы самолет был легким.

It is important that the parasite drag be reduced to a minimum.

Важно, чтобы вредное сопротивление было сведено к минимуму.

It is necessary that a special device continuously track the flight of the rocket.

Необходимо, чтобы особое устройство непрерывно следило за полетом этой ракеты.

Другая форма совпадает с формой прошедшего времени изъявительного наклонения:

They (I, he, she, it, we) were

Они были бы

They (I, he, she, it, we) took

Они взяли бы

Например:

The Earth behaves as if it were a magnet.

Земля ведет себя так, как если бы она представляла собой магнит.

If the rocket maintained its initial speed of 25,000 m.p.h. it would reach the Moon in ten hours.

Если бы первоначальная скорость ракеты в 25 000 миль в час сохранялась на всем протяжении полета, то ракета достигла бы Луны через 10 часов.

Отличить формы сослагательного наклонения от совпадающих с ними форм инфинитива и прошедшего времени изъявительного наклонения можно по их употреблению (§ 37).

Сложные формы. Все глаголы образуют сложные формы сослагательного наклонения с помощью вспомогательных глаголов **should** или **would** и инфинитива смыслового глагола без частицы **to**:

They **should take** }
They **would take** } Они взяли бы

Например:

It is required that an airplane engine should be well balanced dynamically.

Необходимо, чтобы авиационный двигатель был аэродинамически хорошо сбалансирован.

The system proposed would appear to offer definite advantages.

Предлагаемая схема по-видимому даст определенные преимущества.

§ 36. Формы сослагательного наклонения (простые и сложные) могут быть также perfectными:

They **had taken**
They **should have taken** }
They **would have taken** } Они взяли бы

If the conductor at that moment had been moved slowly, the galvanometer deflection would have been smaller.

Если бы проводник в тот момент двигался медленно, то отклонения гальванометра были бы меньше.

Употребление сослагательного наклонения

§ 37. Сослагательное наклонение употребляется в основном в следующих случаях:

1. В придаточных предложениях после безличных оборотов (типа **It is necessary**), выражающих вероятность, необходимость или желательность выполнения данного действия.

Полезно запомнить некоторые обороты, являющиеся своеобразными ориентирами, помогающими отличить формы глагола в сослагательном наклонении от совпадающих с ними других форм глагола:

It is necessary that...	Необходимо, чтобы...
It is essential that...	Важно (существенно), чтобы...
It is desirable that...	Желательно, чтобы...
It is important that...	Важно, чтобы...
It is improbable that...	Маловероятно, чтобы...
It is required that...	Требуется, чтобы...

Например:

It is necessary that the plates of a condenser be well insulated from one another.

Необходимо, чтобы обкладки конденсатора были тщательно изолированы друг от друга.

In many operations it is important that the frequency of the oscillator be constant.

Во многих случаях важно, чтобы частота генератора оставалась постоянной.

2. В придаточных предложениях, если в главном предложении стоят глаголы **to require**, **to demand** — «требовать», **to propose**, **to suggest** — «предлагать», **to desire**, **to wish** — «хотеть», «желать» или от глагольные существительные **requirement**, **demand** — «требование», **proposal** — «предложение» и т. п.:

The main requirement is that both systems should be assembled in an Earth orbit.

Основное требование состоит в том, чтобы обе системы были собраны на околоземной орбите.

3. В предложениях с союзом *if* — «если», *as though* и *as if* — «как если бы», «как будто», *so that* — «так чтобы» и *lest* — «чтобы не», *but* и *for* — «если бы не»:

If there were no frictional losses in a machine, a machine would be 100% efficient.

Если бы не было потерь на трение, коэффициент полезного действия машины был бы равен 100%.

4. В главном или простом предложении, когда подразумевается, что действие могло бы произойти при определенных условиях. В этом случае обычно используется форма *would* (реже *could* и *might*).

An object that weighs 4 lbs at sea level would weigh only $\frac{1}{4}$ of a pound at 4,000 miles above sea level.

Тело, весящее 4 фунта на уровне моря, весило бы (будет весить) только $\frac{1}{4}$ фунта на высоте 4000 миль над уровнем моря.

It would be well now to use a method which would show what fraction of energy is reflected and what part transmitted.

Теперь хорошо бы применить такой метод, который показал бы, какая часть этой энергии отражается, а какая передается.

5. В оборотах «инфинитив как часть сказуемого» с глаголами типа *expect*, *appear*:

Temperature would be expected to play a role in this reaction.

Можно предположить, что температура играет роль в этой реакции (По-видимому, температура...)

Способы перевода сослагательного наклонения

§ 38. Все формы сослагательного наклонения имеют в английском языке в основном одинаковое значение и могут переводиться на русский язык следующими способами:

1. Глаголом в сослагательном наклонении, т. е. глаголом в прошедшем времени с частицей «бы».

If our Sun were the heat source of an engine, it would deliver $500 \cdot 10^{21}$ horse power.

Если бы наше Солнце использовалось в качестве источника тепловой энергии для двигателя, оно вырабатывало бы энергию, равную $500 \cdot 10^{21}$ лошадиных сил.

Частица «бы» в русском языке может присоединяться не только к глаголу («использовалось бы»), но также к союзу («если бы использовалось»); кроме того, частица «бы» входит в состав союза «чтобы» («чтобы использовалось»).

2. Инфинитивом:

If a thermometer be placed in a container of hot water...

Если термометр поместить в сосуд с горячей водой, то...

Такой перевод обычно возможен, если глагол-сказуемое имеет форму стратательного залога.

3. Форму сослагательного наклонения с глаголом *would* в некоторых случаях лучше переводить не указанным выше способом, а глаголом в будущем времени в сочетании с модальным словом «вероятно», «по-видимому»:

During the next decade it would certainly be possible to build a manned rocket for the flight to other planets.

В течение ближайшего десятилетия, вероятно, будет возможно построить ракету для полета человека на другие планеты.

Если в предложении уже содержатся слова со значением, близким к «вероятно», «по-видимому» (например, наречие *probably* или глаголы *appear*, *seem*), то добавлять модальное слово не надо:

The ion rocket would probably use cesium as a working fuel.

По-видимому, в ионной ракете в качестве рабочего тела будет использоваться цезий.

Употребление модальных глаголов для выражения сослагательного наклонения

§ 39. Модальные глаголы *may*, *might* и *could* в сочетании с инфинитивом смыслового глагола могут служить для выражения сослагательного наклонения. При этом они обычно сохраняют свое значение и переводятся словами «мог бы», «могло бы»:

This communication channel *could* handle over 10^{10} words per hour if it were used for telegraphy.

Этот канал связи мог бы пропускать (пропускал бы) выше 10^{10} слов в час, если бы он использовался для работы в телеграфном режиме.

Бессоюзное условное предложение

§ 40. Наряду с условными предложениями обычного типа, начинающимися с союза *if* — «если», в английском языке употребляются бессоюзные условные предложения. Глагол-сказуемое в таких предложениях стоит обычно в форме сослагательного наклонения:

Should the cathode *be heated* to a higher temperature, more electrons will be emitted.

Если катод нагреть до более высокой температуры, то будет излучаться большее количество электронов.

В бессоюзных условных предложениях (как показывает пример) вспомогательные глаголы *should*, *were* и *had*, входящие в состав сказуемого, ставятся на первое место в предложении (перед подлежащим). Таким образом, местоположение глаголов *should*, *were*, *had* в начале предложения является основным признаком условного бессоюзного предложения. Перевод такого предложения следует начинать словом «если» или «если бы».

Запомните следующие застывшие обороты, которые часто используются в такого рода предложениях:

were it not for (=if it were not for)
had it not been for (=if it had not been for) } если бы не...

Употребление и перевод глагола *should*

§ 41. 1. Глагол *should* чаще всего выступает как модальный глагол и переводится словами «должен», «следует», «необходимо». В этом случае он употребляется в простом предложении или в главной части сложного предложения:

The drag of the plane *should be* minimum.

Лобовое сопротивление самолета должно быть минимальным.

It *should be* noted that space flight involves many different problems.

Следует отметить, что полет в космическое пространство затрагивает много различных проблем.

2. Глагол *should* может служить для образования сослагательного наклонения. В этом случае он употребляется в сложном предложении и его можно отличить от модального глагола по признакам, указанным в § 37, п. 1 и 2.

Употребление и перевод глагола *would*

§ 42. 1. Глагол *would* чаще всего служит для образования сослагательного наклонения (§ 37, п. 3 и 4).

2. Глагол *would* может служить для образования относительного будущего времени по правилу согласования времен и в этом случае в сочетании с инфинитивом переводится будущим временем:

Man *always thought* that he would conquer space.

Человек всегда думал, что он завоюет космическое пространство.

3. Глагол **would** иногда может выражать повторность действия в прошлом. Тогда он имеет значение «бывало». В научно-технической литературе в этом значении он употребляется редко:

About 50 years ago pilots would fly only in good weather.

Около пятидесяти лет назад летчики обычно (бывало) летали только в хорошую погоду.

НЕСВОБОДНЫЕ СЛОВОСОЧЕТАНИЯ

§ 43. Наряду со словосочетаниями, смысл которых складывается из значений отдельных слов, входящих в словосочетание (например, *to take a book* — «взять книгу»), в языке имеются словосочетания особого рода, в которых отдельные слова теряют свою смысловую самостоятельность и образуют одно устойчивое (несвободное) сочетание. Например, *to take part* — «принимать участие» (а не «брать часть»). По этой причине значение такого рода словосочетаний не всегда легко можно вывести из значений компонентов. Такие словосочетания принято называть **несвободными** (или фразеологическими) словосочетаниями.

Чтобы правильно переводить эти сочетания, надо, во-первых, научиться узнавать их в тексте даже в том случае, когда их члены следуют в измененном порядке или разобщены определениями или обстоятельственными группами, и запомнить особые, присущие этим сочетаниям значения. Во-вторых, нужно выработать готовность встретить в тексте такого рода новые, неизвестные сочетания и знать, как их найти в словаре.

В зависимости от состава словосочетания можно подразделить на несколько групп. Рассмотрим каждую из этих групп.

Несвободные словосочетания с глаголом

§ 44. Глаголы образуют несвободные словосочетания с существительными и прилагательными.

В предложении такие сочетания чаще всего употребляются в личной форме и выполняют функцию сказуемого:

The steam engine makes use of the kinetic energy of steam. Паровой двигатель использует кинетическую энергию пара.

Однако они могут употребляться также и в неличной форме, т. е. в форме инфинитива, причастия, герундия:

The phenomena taking place in the upper atmosphere is of great interest to scientists. Явления, происходящие в верхних слоях атмосферы, представляют для ученых большой интерес.

В смысловом отношении основным словом словосочетания является глагол, а существительное (или прилагательное). Поэтому при переводе словосочетаний следует опираться на лексическое значение существительного или прилагательного:

to draw a conclusion

делать вывод, приходить к заключению

to pay attention (to)

обращать внимание (на что-л.)

to take care (of)

заботиться, проявлять заботу (о чем-л.)

to feel certain

быть уверенным

Из примеров видно, что словосочетания с глаголом можно переводить на русский язык или словосочетанием («проявлять заботу») или одним словом-глаголом («заботиться»).

Рассмотрим более подробно отдельные виды словосочетаний с глаголом.

Словосочетания «глагол + существительное с предлогом»

§ 45. В качестве первой части словосочетаний этого типа чаще всего употребляются глаголы *to be*, *to bring*, *to put*, *to set*, *to go*, *to come*, *to take*.

§ 46. Словосочетания с глаголом *to be*. Наиболее употребительными словосочетаниями данного типа являются:

to be under test	испытываться, находиться в стадии испытания
to be under study	изучаться, находиться в стадии изучения
to be under development	разрабатываться, находиться в стадии разработки
to be under consideration	рассматриваться, находиться в стадии рассмотрения
to be in use	использоваться, применяться
to be in operation	применяться, работать, действовать
to be in service	применяться, использоваться

Словосочетание данного типа в целом обозначает «быть (находиться) в каком-либо состоянии», причем существительное указывает конкретное состояние (например, «находиться в стадии испытания»):

A new jet airliner is now under test. В настоящее время испытывается (находится в стадии испытания) новый реактивный лайнер.

Некоторые словосочетания такого типа нельзя перевести, пользуясь указанной выше моделью. Их рекомендуется запомнить вместе с переводом:

to be in excess (of smth)	превышать (что-л.)
to be in a position (to do smth)	быть в состоянии, иметь возможность, мочь
to be in progress	осуществляться, идти полным ходом
to be under way	осуществляться, разрабатываться, находиться в стадии разработки

§ 47. Среди словосочетаний с глаголом *to be* следует особо выделить группу сочетаний с существительным с предлогом *of*:

Experiments with cosmic rays intensities are of great importance. Опыты по изучению интенсивности космических лучей имеют большое значение (являются очень важными).

Такое словосочетание переводится по модели «иметь (представлять) значение (важность, интерес)».

Наиболее употребительными словосочетаниями этого типа являются:

to be of interest	представлять интерес
to be of importance	иметь значение
to be of value	представлять ценность
to be of significance	иметь значение
to be of consequence	иметь значение
to be of no account	не иметь значения

§ 48. Словосочетания «глагол *to bring* (to put, to set) + существительное с предлогом»:

Bodies are set into motion when a force acts upon them. Тела приходят в движение, когда на них действует сила.

Словосочетания такого типа означают «приводить в какое-либо состояние (или действие)», причем существительное указывает конкретное состояние или действие (например, «приводить в движение»).

to bring into action	приводить в действие, начинать действовать
to bring into use	начинать использовать
to put into operation	вводить в действие
to put into use	начинать применять
to put into practice	вводить в действие, осуществлять
to set into (in) motion	приводить в движение

§ 49. Словосочетания «глагол **to come** (to go) + существительное с предлогом»:

This measuring device **came into use** after World War II. Этот измерительный прибор стал применяться после второй мировой войны.

Наиболее распространенными из них являются:

to come into action	вступать в действие
to come into use	начинать применяться
to come into play	начинать действовать
to come into being	возникать, появляться на свет
to go into play	вступать в действие
to go into service	вступать в действие (в строй)

Словосочетания такого типа, как видно из примеров, означают начало действия.

Словосочетание **to go into particulars** «вдаваться (входить) в подробности» рекомендуется запомнить вместе с переводом.

§ 50. Словосочетания «глагол **to keep** (to bear) + существительное **mind**»:

One must **keep in mind** that such circuit arrangements might only prove attractive if... Следует помнить, что такое расположение контуров могло бы оказаться целесообразным только в том случае, если...

К словосочетаниям этого типа относятся:

to keep in mind	помнить, учтывать
to bear in mind }	

§ 51. Словосочетания «глагол **to take** + существительное с предлогом». We must always **take into consideration** the amount of force applied. Мы всегда должны учитывать величину приложенной силы.

К такого рода словосочетаниям относятся:

to take into consideration	принимать во внимание, учитывать
to take into account	принимать во внимание (в расчет)

Словосочетания «глагол + существительное»

§ 52. 1. Наиболее распространенными словосочетаниями этого типа являются следующие:

to give (an)account (of smth)	давать сведения, описывать (что-л.)
to give consideration (to smth)	рассматривать, учтывать (что-л.)
to give rise (to smth)	вызывать (что-л.)
to make use (of smth)	использовать, применять (что-л.)
to make mention (of smth)	упоминать о (чем-л.)
to make reference (to smth)	ссылаясь на (что-л.)
to make provision (for smth)	принимать меры, предусматривать (что-л.)
to pay attention (to smth)	обращать внимание на (что-л.)
to place emphasis (on smth)	придавать особое значение (чему-л.), подчеркивать (что-л.)

to draw a conclusion	делать вывод
to take part	принимать участие в (чем-л.)
to take place	иметь место, происходить
to take care	заботиться о (чем-л.), следить за (чем-л.), принимать меры
to take advantage (of smth)	использовать (что-л.), воспользоваться (чем-л.)

2. Многие из подобных словосочетаний встречаются в измененной форме:

Сравните:

to make use → use is made

Как видно из примера, в словосочетании происходит изменение порядка слов. Подлежащим становится существительное, входящее в данное сочетание, а глагол принимает форму страдательного залога.

Переводятся такие словосочетания глаголом, образованным на основе существительного (use — польза, use is made — «используется»).

The thinner the wire, the higher is its resistance, and use is made of this fact in designing rheostats.

Чем тоньше провод, тем больше его сопротивление. Это положение используется при конструировании реостата.

К таким словосочетаниям относятся:

use is made (of)	(здесь) используется (что-л.)
reference is made (to)	(здесь) ссылаются на (что-л.)
mention is made (of)	(здесь) упоминается (что-л.)
provision is made (of)	(здесь) предусматриваются меры (для чего-л.)
consideration is given (to)	(здесь) рассматривается (что-л.)
account is taken (of)	(здесь) учитывается (что-л.)
advantage is taken (of)	(здесь) используется (что-л.)
care is taken (of)	(здесь) принимаются меры; проявляется осторожность в (чем-л.)
emphasis is placed (on)	(здесь) придается особое значение (чему-л.)

3. Словосочетания to make use и to take care могут иметь еще и другую форму страдательного залога:

This fact is made use of.

Этот факт используется.

This effect is taken care of.

Этот эффект учитывается.

В этом случае все словосочетание входит в группу сказуемого.

Словосочетания «глагол + прилагательное»

§ 53. Наиболее употребительными словосочетаниями этого типа являются:

to be aware (of smth)	знат (о чем-л.), отдавать себе отчет (в чем-л.)
to be familiar (with smth)	знат (что-л.), быть знакомым (с чем-л.)
to be responsible (for smth)	обуславливать, вызывать (что-л.), быть причиной (чего-л.)
to hold true	быть справедливым, действительным
to feel certain (sure) (about smth)	быть уверенным (в (в чем-л.)
The solar radiation is responsible for some interesting events in the ionosphere.	Солнечная радиация является причиной некоторых интересных явлений, происходящих в ионосфере.

Особые обороты с глаголом

§ 54. К словосочетаниям с глаголом, помимо указанных выше, относятся некоторые особые обороты, представляющие собой целые предложения или части предложения:

It happens that
It appears that

случается, что; оказывается, что
 создается впечатление, что; оказы-
 вается, что

It seems that

кажется, что; по-видимому

It requires... (to do smth)

требуется... (чтобы сделать что-л.)

It follows that

требуется... (чтобы сделать что-л.)

It follows (from smth) that

из этого следует, что

It takes... (to do smth)

требуется... (чтобы сделать что-л.)

It takes smb... (to do smth)

кому-л. требуется (для того чтобы
 сделать что-л.)

It turns out that

оказывается, что

It takes our Moon $27\frac{1}{3}$ days to
revolve around the Earth.

Луне требуется $27\frac{1}{3}$ дня для того,
чтобы совершить один оборот вокруг
Земли.

Эти обороты рекомендуется запомнить в целом вместе с переводом.

§ 55. Некоторые словосочетания с глаголами не подходят ни под одну из перечисленных выше моделей. К ним относятся:

to be bound (to do smth)
to have to do (smth)

должен, вынужден (сделать что-л.)
 иметь дело с (чем-л.)

Несвободные словосочетания с существительным и другими частями речи

§ 56. В состав данной группы несвободных словосочетаний, помимо существительного или какой-либо другой части речи (прилагательного, наречия), как правило, входит предлог.

Словосочетания такого типа часто группируются вокруг определенных слов. Такими словами являются *date*, *part*, *time*, *so*, *as* и др. Значение таких словосочетаний чаще всего трудно вывести из значений компонентов и их рекомендуется запоминать в целом.

§ 57. Словосочетания со словом *date*:

up to date
out of date
to date

современный, новейший
 устаревший
 до настоящего времени, до сих пор,
 на сегодняшний день

§ 58. Словосочетания со словом *part*:

for the most part
in part
on the part of (smb)

главным образом, по большей части
частично
со стороны (кого-л.)

§ 59. Словосочетания со словом *time*:

at times
for the time being

иногда
в данное время, пока, на некоторое
время
вовремя

in time

§ 60. Словосочетания со словом *as*:

as to (smth) {
as for (smth) {
as far as {
so far as {

что касается (чего-л.), в отношении
 (чего-л.)
 насколько, поскольку

as long as }	(до тех пор) пока; поскольку
so long as }	1. следующим образом; 2. следующие
as follows	еще, все еще, пока
as yet	как только
as soon as	а также и; как... так и
as well as	также
as well	как если бы
as if	
as though }	

§ 61. Словосочетания со словом so:

so as	так чтобы, с тем чтобы
so that	так что(бы), с тем чтобы
so far	до сих пор
or so	или около этого
and so on }	и так далее, и тому подобное
and so forth }	

Несвободные сочетания в функции предлога

§ 62. Несвободные словосочетания с существительным и другими частями речи часто выполняют в предложении функцию предлога:

On account of rapidly increasing t° towards the interior, the degree of ionization of the solar atoms also increases toward the solar centre.

Вследствие быстрого увеличения температуры по направлению к центру (Солнца) степень ионизации атомов также увеличивается по направлению к центру Солнца.

К числу наиболее распространенных сочетаний, выполняющих функцию предлога, относятся следующие:

apart from (smth) }	помимо, кроме (чего-л.)
aside from (smth) }	
along with (smth)	наряду с (чем-л.), вместе с (чем-л.)
combined with (smth)	
in conjunction with (smth) }	
together with (smth)	
because of (smth)	из-за, вследствие (чего-л.), благодаря (чему-л.)
on account of (smth) }	
owing to (smth) }	
due to (smth) }	благодаря (чему-л.), вследствие (чего-л.)
thanks to (smth)	в силу (чего-л.), благодаря (чему-л.), ввиду (чего-л.), принимая во внимание (что-л.), вследствие (чего-л.)
in (by) virtue of (smth)	
In view of (smth)	в отношении, что касается (чего-л.)
with respect to (smth)	
with reference to (smth) }	
with (in) regard to (smth) }	
as regards (smth)	
prior to (smth) }	до, перед (чем-л.)
previous to (smth) }	
in contrast to (smth) }	в противоположность (чему-л.)
contrary to (smth) }	
according to (smth) }	согласно (чему-л.), в соответствии с (чем-л.)
in accordance with (to) (smth) }	
as compared with (to) (smth) }	по сравнению с (чем-л.)
in comparison with (smth) }	

at the expense of (smth)	за счет (чего-л.)
as distinct from (smth)	в отличие от (чего-л.)
irrespective of (smth)	независимо от (чего-л.)
in spite of (smth)	несмотря на (что-л.)
except for (smth)	исключая (что-л.)

Несвободные словосочетания в функции союза

§ 63. Словосочетания с существительным и другими частями речи могут выполнять роль союза:

The device will operate as long as the fuel lasts. Этот аппарат будет работать до тех пор, пока не израсходуется горючее.

Наиболее употребительные словосочетания, выступающие в качестве союза:

as far as	насколько, поскольку
so far as	
as long as	(до тех пор) пока, поскольку
so long as	
as soon as	как только
as well as	
as if	а также и
as though	
so as	как если бы
so that	
now that	(так) чтобы так что(бы), с тем чтобы теперь, когда

§ 64. Некоторые словосочетания «существительное с предлогом» могут служить для связи отдельных частей высказывания. К таким словосочетаниям относятся: *In addition* — «кроме того», *on the contrary* — «наоборот» и некоторые другие. Они будут рассматриваться в разделе «Слова и словосочетания, служащие для связи отдельных частей высказывания» (§ 68—74).

§ 65. Несвободные словосочетания с существительным и другими частями речи могут выполнять в предложении функцию обстоятельства или определения:

Let us calculate how much time on the average it takes the rays of the sun to get to the earth.

Давайте подсчитаем, сколько времени в среднем потребуется, чтобы лучи солнца достигли земли.

К наиболее распространенным из них следует отнести:

in common	общие (для всех)
in turn	1. в свою очередь; 2. по очереди
at length	1. подробно; 2. наконец
by now	к настоящему моменту
by then	к тому времени
on the whole	в целом
on the average	в среднем
no longer	больше не
a great deal	много
a good deal	еще раз
once more	сразу
at once	друг друга
one another	
each other	

§ 66. Некоторые словосочетания могут выражать отношение автора к высказыванию, а также служить для выделения и пояснения отдельных частей

высказывания. К таким словосочетаниям относятся: *in fact* — «фактически», *by no means* — «ни в коем случае», *at most* — «в лучшем случае» и другие. Они будут рассматриваться в § 75—80.

Особые обороты

§ 67. Некоторые словосочетания представляют собой готовые обороты. Их рекомендуется запоминать в целом вместе с переводом.

Такими словосочетаниями являются:

1. Оборот *this (such) is the case* — «это имеет место», «это так и есть на самом деле» и его вариант *as (than) is the case* — «как (чем) это имеет место».

The absence of an atmosphere on the Moon causes its temperature to vary much more than *is the case* on the Earth.

Отсутствие атмосферы на Луне приводит к тому, что колебания температуры на ее поверхности гораздо более резки, чем на Земле (Досл. «чтм это имеет место на Земле»).

В этот оборот может входить отрицание *not*, например: *this is not the case* «это не так»; «этого не происходит»; не об этом идет речь».

Venus was formerly believed to be larger than the Earth, but *this is not the case*.

Раньше считали, что Венера больше Земли, но это не так.

2. Оборот *as far as smth is concerned* и его вариант (*in*) *so far as smth is concerned* — «что касается (того-то)», «когда речь идет о (том-то)»:

As far as the limitations are concerned, we may say that although the computer cannot completely avoid errors, it is more error-free than are the available alternatives.

Что касается недостатков, присущих счетно-решающему устройству, можно сказать, что хотя это устройство и допускает ошибки, их значительно меньше, чем в других устройствах такого рода.

СЛОВА И СЛОВОСОЧЕТАНИЯ, СЛУЖАЩИЕ ДЛЯ СВЯЗИ ОТДЕЛЬНЫХ ЧАСТЕЙ ВЫСКАЗЫВАНИЯ

§ 68. Наряду с союзами существует ряд слов и словосочетаний, которые служат для связи отдельных частей высказывания, то есть выполняют ту же функцию, что и союзы. Обычно они стоят в начале предложения и отделяются от остальной части предложения запятой. На это следует обращать особое внимание, так как именно этот признак помогает опознать сочетание и установить его функцию. Знание этих слов помогает проследить логическую последовательность изложения, ход мыслей автора.

В зависимости от значения эти средства связи можно подразделить на несколько групп.

§ 69. Средства связи, указывающие на последовательность мыслей и действий (*«сначала»*, *«потом»*, *«иаконец»*):

<i>first, at first, first of all</i>	}	во-первых, сначала, прежде всего
<i>in the beginning</i>		во-вторых
<i>to begin with</i>	}	далее, затем
<i>second, secondly</i>		
<i>next</i>	}	
<i>further</i>		
<i>then</i>	}	
<i>finally</i>		
<i>lastly</i>	}	
<i>at last</i>		
<i>in the end</i>	}	(и) наконец

§ 70. Средства связи, выражающие присоединение к высказыванию, то есть присоединяющие к предшествующему предложению новое предложение, содержащее дополнительные замечания, или развивающие мысль («кроме того», «помимо этого» и др.):

in addition

в дополнение к сказанному; кроме того

moreover
furthermore

более того; кроме того; к тому же далее; более того; кроме того; к тому же

also
again

более того; кроме того; к тому же 1. более того; кроме того; далее; 2. в этом случае; и снова; 3. с другой стороны

likewise
similarly
besides
now

точно так же; аналогичным образом кроме этого; помимо этого; притом 1. далее; 2. итак

Radio wind balloons provide wind information. In addition, such balloons carry instruments for measuring pressure, temperature and humidity.

Радионаноны представляют информацию о снеге и направлении ветра. Кроме того, на них располагаются приборы для измерения давления, температуры и влажности.

§ 71. Средства связи, выражающие противопоставление («напротив», «однако» и др.):

however
still
yet
nevertheless

однако; тем не менее; все же

on the contrary
in (by) contrast
conversely
alternatively
otherwise
rather
on the one hand
on the other hand

(и) наоборот; напротив; в противоположность этому; с другой стороны

иначе; в противном случае
скорее; вернее; пожалуй
с одной стороны
с другой стороны

When the secondary winding is composed of a greater number of turns than the primary the transformer is called a step-up transformer. Conversely, when the smaller number of turns is on the secondary it is known as a step-down transformer.

Если вторичная обмотка имеет больше витков, чем первичная, то трансформатор называется повышающим. И наоборот, при меньшем числе витков на вторичной обмотке трансформатор называют понижающим.

§ 72. Средства связи, показывающие, что высказывание является следствием, суммированием предыдущего («вследствие этого», «поэтому», «итак» и др.):

hence

следовательно; отсюда; из этого следует

thus
therefore
accordingly
consequently
as a consequence
In consequence

итак; так; таким образом; поэтому поэтому; следовательно; таким образом

следовательно; поэтому; в результате этого

as a result
in brief
in short
briefly
In a few words
in sum
in summary
to sum up
to summarize

}

в результате этого

вкратце; короче говоря

итак; суммируя, можно сказать, что

Bernoulli's theorem states that the energy at any particular point in a flow of gas remains constant. Thus if the velocity is increased at constant temperature, the pressure must correspondingly decrease.

В теореме Бернулли утверждается, что энергия в каждой определенной точке потока газа остается постоянной. Таким образом, если скорость увеличивается при постоянной температуре, давление соответственно должно снижаться.

§ 73. Слова и словосочетания, служащие для связи, как уже упоминалось, обычно стоят в начале предложения и отделяются запятой (см. примеры, данные выше), однако они могут стоять и в середине предложения. Во всех случаях эти слова при переводе рекомендуется выносить в начало предложения:

The amount of electricity represented by the proton and the electron is equal in magnitude but opposite in sign. The mass of the atom, however, is represented essentially by the proton.

Электрические заряды протона и электрона равны по величине, но противоположны по знаку. Однако масса атома представлена в основном протоном.

§ 74. 1. Многие слова, служащие для связи, совпадают по форме с наречиями. К ним относятся: also, again, still, yet, rather, then, otherwise, so.

	Средство связи	Наречие
also	кроме того; более того	также
again	кроме того; более того; с другой стороны	снова
still	однако; тем не менее	(все) еще; до сих пор
yet	однако	еще
then	затем; следовательно	тогда; в этом случае
otherwise	иначе; в противном случае	в другом отношении; другим образом
rather	скорее	довольно, весьма
so	итак; следовательно	так; таким образом

Определить, чем именно является какое-либо из этих слов, можно по месту, которое оно занимает по отношению к другим словам. Если такое слово стоит в начале предложения и отделено запятой, то оно является средством связи. Если оно относится к глаголу, прилагательному или причастию, то оно является наречием:

Сравните:

The nucleus of an atom contains most of the atom's mass, yet it occupies very little of the atomic volume.

В ядре атома содержится почти вся масса атома, однако ядро занимает лишь незначительную часть объема атома.

No machine has yet been found that delivers more energy than is put into it.

До сих пор еще не изобретена машина, которая совершила бы большую работу, чем энергия, сообщенная ей.

2. Некоторые слова, служащие для связи, совпадают по форме с прилагательными;

Средство связи			Прилагательное
first	во-первых		первый
next	далее; затем		следующий
further	далее; затем		дальнейший

Различать эти слова также следует по их месту в предложении.
Сравните:

First, concepts to be considered are...	The first methods...
Во-первых, представления, которые будут рассмотрены ...	Первые методы...

СЛОВА, СЛОВОСОЧЕТАНИЯ И ОБОРОТЫ, СЛУЖАЩИЕ ДЛЯ ВЫРАЖЕНИЯ ОТНОШЕНИЯ АВТОРА К ВЫСКАЗЫВАЕМОЙ МЫСЛИ И ДЛЯ ЕЕ УТОЧНЕНИЯ

§ 75. Эти слова, словосочетания и обороты по значению можно условно подразделить на несколько групп. Они могут выражать уверенность, вероятность, сожаление, выделение наиболее важного, ограничение, поиски более удачной формулировки, ссылку на общепризнанность сообщаемого.

§ 76. Слова, словосочетания и обороты, выражающие уверенность («конечно», «несомненно», «никаким образом» и др.):

of course		конечно, разумеется
undoubtedly		
no doubt		несомненно, бесспорно, без сомнения
beyond doubt		
without doubt		
to be sure		конечно, несомненно, разумеется
needless to say		ничего и говорить, само собой разумеется
in reality		в действительности
indeed		действительно, и на самом деле
In fact		фактически, на самом деле, в действительности
as a matter of fact		
in effect		
true		действительно, несомненно
to say(tell) the truth		по правде говоря
by no means		никаким образом

Обороты (в форме главных предложений):

It is true that	Несомненно, что
It is (quite) certain that	Несомненно, что
There is no doubt that	Нет никакого сомнения в том, что;
	без сомнения
It is beyond doubt that	Несомненно, что
It is more than likely that	Несомненно (более чем вероятно),
There is every indication that	что
It is a safe assumption that	Все говорит о том (указывает на то),
	что
	Есть все основания предполагать,
	что

Например:

There is no doubt that the simplest machine is the lever.

Без сомнения, простейшей машиной является рычаг.

§ 77. Слова, словосочетания и обороты, выражающие вероятность («возможно», «вероятно» и др.):

probably	вероятно
in all probability	по всей вероятности
perhaps	возможно, может быть
possibly	возможно
apparently	очевидно, по-видимому
presumably	по-видимому, предположительно
suppose	предположим
say	скажем

Обороты (в форме главных предложений):

It is likely that	По-видимому
It appears likely that	Кажется вероятным, что
It seems likely that	Кажется вероятным, что
We feel that	Нам кажется, что
It is felt that	Кажется, что
We assume that	Мы полагаем, что
It is assumed that	Предполагают, что
We believe that	Мы полагаем, что
It is (widely) believed that	Многие полагают, что
It is our belief that	Мы полагаем, что
It is (commonly) supposed that	Обычно предполагают, что
There is a (reasonable) chance that	Возможно (есть все основания полагать), что

Например:

Since there was much research along this line it is our belief that it is better to limit ourselves to the experiments made in 1960.

Так как в этой области проводилась большая исследовательская работа, мы полагаем, что лучше ограничиться опытами, сделанными в 1960 г.

§ 78. Слова, словосочетания и обороты, дающие оценку высказыванию с точки зрения его желательности или нежелательности («к счастью», «к сожалению» и др.):

fortunately	к счастью, по счастливой случайности
happily	к счастью
unfortunately	к сожалению
strange enough	удивительно что; как это ни удивительно
strange to say	странно, что
surprisingly	неожиданным образом; как ни странно; удивительным было то, что
curiously enough	как ни странно

Обороты (в форме главных предложений):

It is fortunate that	К счастью (мы); Хорошо, что (мы)
It is (most) unfortunate that	К (большому) сожалению (мы); Плохо, что (мы)
It is not surprising that	Едва ли вызывает удивление тот факт, что
It is strange that	Удивительно, что

Например:

Because of its low molecular weight, it is not surprising that hydrogen should be an ideal fluid from a performance standpoint.

Так как водород обладает низким молекулярным весом, то неудивительно, что он должен быть идеальным топливом с точки зрения коэффициента полезного действия.

§ 79. Слова и словосочетания, служащие для выделения, ограничения и уточнения отдельных частей высказывания («особенно», «именно», «в таком-то отношении», «в таком-то случае» и др.):

in the first place	прежде всего; сначала
mainly	в основном; главным образом
largely	главным образом; в основном; преимущественно
basically	в своей основе; по существу; в основном; в принципе
essentially	по существу; в основном
particularly	в особенности; в частности
in particular	
in general	вообще; обычно; как правило, в большинстве случаев
generally	
generally speaking	вообще говоря
broadly speaking	
strictly speaking	строго говоря
as a rule	как правило
at any rate	во всяком случае
at most	в лучшем случае
at best	
at least	по крайней мере
in a sense	в известном смысле
in a general (broad) sense	в широком смысле (слова)
to a certain (some) degree	
to a certain (some) extent	до некоторой степени
more or less	более или менее
only	
just	
but	
merely	только; лишь
not to mention	
to say nothing of	
to say the least	не говоря уже о (чем-л.) по меньшей мере

Например:

Basically, the aircraft power plant consists of a device for producing thrust.

§ 80. Слова и словосочетания, вводящие дополнительные пояснения к высказываемой мысли («другими словами», «точнее» и др.):

in other words	
to put it in another way	другими словами, иначе говоря
to put the other way round	
in plain words	просто говоря
more simply	проще говоря
to be more exact	
to be more accurate	
to be more precise	
to be specific	
more specifically	говоря точнее; точнее
more properly	
so to speak	
so to say	так сказать

Например:

In Galileo's time people believed that heavy objects fell faster than lighter objects; in other words, that the speed of a falling body depended upon its weight.

Во времена Галилея считали, что тяжелые предметы падают быстрее, чем легкие; другими словами, считали, что скорость падения тела зависит от его веса.

§ 81. Обороты, выражающие ссылку на общепризнанность мысли или действия («общенизвестно» и др.):

It is well (commonly) known that }	Общеизвестно, что
It is common knowledge that	
It has long been an accepted fact	Давно признано, что
It has been recognized that	Признано, что
It is generally realized that	Всем известно (понято), что
It has been (generally) established	Установлено (общепризнано), что

ГРУППА СУЩЕСТВИТЕЛЬНОГО

Существительное с левыми определениями

§ 82. Для английской научно-технической литературы характерно широкое использование существительного с определениями, стоящими от него слева, так называемых цепочек существительного.

Такая группа иачиняется с артикля, предлога, местоимения (притяжательного, указательного или неопределенного) или числительного. Кончается группа либо перед новым артиклем, местоимением, предлогом, причастием, прилагательным, либо перед союзом или глаголом:

In the later Atlas-based launching vehicle the low-orbit payload capability is in excess of 1.5 per cent of all-up mass.

Основным является последнее слово группы. Слова, стоящие слева от основного слова (между артиклем или другим определителем и основным словом), являются определениями.

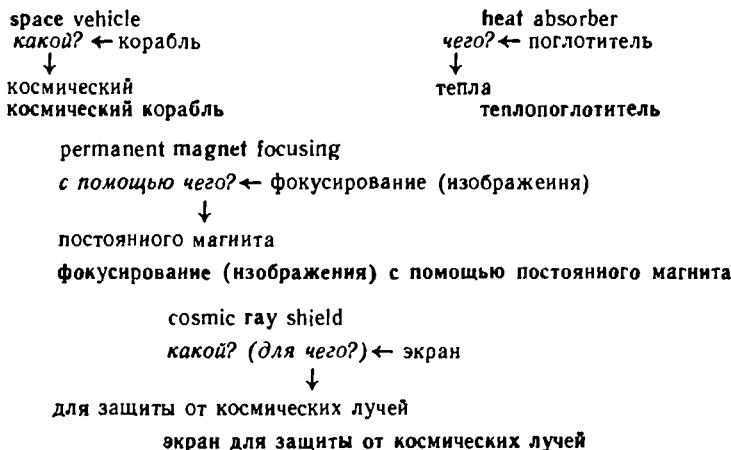
§ 83. В качестве левого определения к существительному может употребляться прилагательное, существительное, причастие, герундий, числительное, а также сочетания из этих слов (часто соединенные дефисом):

The first man-made digital computer was probably the abacus.

Таких левых определений может быть несколько (до семи слов).

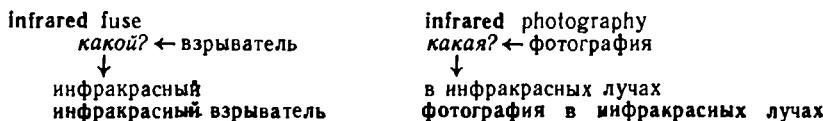
При переводе группы существительного важно соблюдать определенную последовательность. Сначала перевести основное (последнее) слово группы — оно всегда передается русским существительным, а затем переводить ближайшее к основному и идти справа налево, устанавливая путем вопросов смысловые отношения между словами.

Перевод, выполненный в такой последовательности, очень часто бывает черновым, стилистически неотработанным, но правильно передающим смысловые отношения. Его следует отредактировать, расположив левые определения в порядке, свойственном русскому языку. При этом некоторые левые определения окажутся справа от основного слова. Специальные термины (если они входят в состав группы) нужно заменить готовыми терминами, употребляющимися в данной отрасли техники в русском языке.

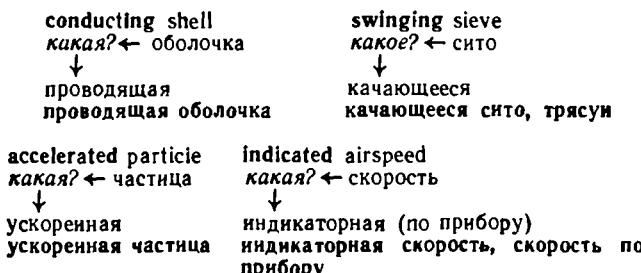

§ 84. Рассмотрим наиболее типичные модели группы существительного с левыми определениями и способы их перевода.

Вопросы, которые мы задаем в процессе перевода, для раскрытия смысловых отношений между словами группы, могут быть различными в зависимости от того, какой частью речи выражено определение, а также от значения слова, являющегося определением.

1. Определением к основному слову является существительное.


Английское существительное в этой функции обычно передается русским существительным в родительном падеже (*neutron absorber* — «поглотитель нейтронов»), прилагательным (*electron accelerator* — «электроны ускоритель») или существительным с предлогом (*nozzle burner* — «горелка с насадкой»).

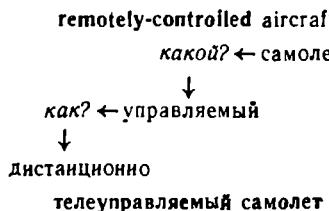
В этих случаях от основного слова к существительному можно задать вопрос «какой?», «чего?» (или «для чего?», «от чего?», «с помощью чего?»):


2. Определением к основному слову является прилагательное.

В подобных случаях к прилагательному при переводе следует задать вопрос «какой?» и перевести его прилагательным, существительным в родительном падеже или существительным с предлогом:

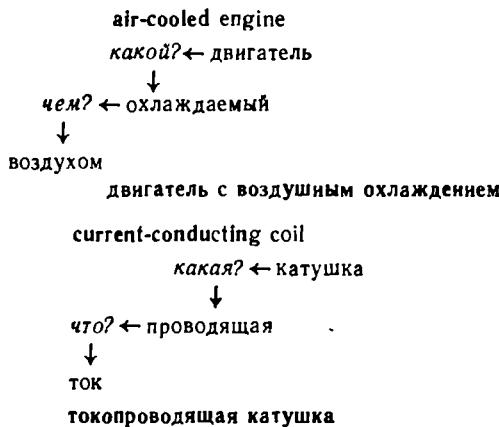
3. Определением к основному слову является причастие I или причастие II.

Если определением к основному слову является причастие, то при переводе следует задать вопрос «какой?» и перевести его причастием, прилагательным или существительным (иногда с предлогом):



При переводе причастий следует иметь также в виду, что в некоторых случаях причастие I и причастие II могут быть переданы русским причастием как действительного, так и страдательного залога:

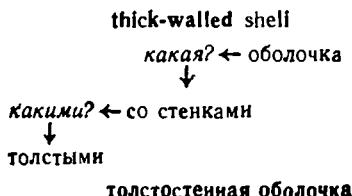
Incoming air — поступающий воздух, всасываемый воздух


4. Определением к основному слову является наречие+причастие I (или причастие II).

Здесь наречие является пояснительным словом к причастию-определению. К нему от причастия задается вопрос «как?», «каким образом?»:

Нередко в этом случае используются так называемые усеченные наречия (без суффикса *-ly*), например, *remote-controlled aircraft*.

5. Определение к основному слову — существительное+причастие I (или причастие II):



В первом примере пояснительным словом к причастию II является существительное, которое показывает, кем или чем выполняется действие.

Во втором примере существительное, стоящее перед причастием I, по смыслу является как бы дополнением к причастию и отвечает на вопрос «что?».

6. Определение к основному слову — сложное прилагательное с суффиксом *-ed*.

В этом случае к отдельным компонентам сложного прилагательного ставится тот же вопрос, что и к обычному существительному, то есть «какой?»:

7. Более сложные модели состоят из тех же компонентов, что и рассмотренные нами простые модели. Поэтому для правильного раскрытия связи между ними надо задавать те же вопросы:

§ 85. 1. В группе существительного слова, стоящие рядом, в некоторых случаях выражают одно понятие и образуют внутри левого определения более мелкие группы (звенья). При переводе такие группы должны рассматриваться как единое смысловое целое. Между словами группы часто стоит дефис (-), однако его может и не быть:

landing direction-finding station
посадочная радионавигационная станция

2. При переводе группы существительного следует иметь в виду, что не каждое слово группы является определением к соседнему слову (или группе слов), стоящему от него справа. Оно может быть определением к основному слову группы.

maximum control surface deflection angle
максимальный угол отклонения руля

Поэтому при переводе каждого слова нужно решить (перебирая возможные варианты перевода), является ли оно по смыслу определением к соседнему или к основному слову группы.

§ 86. 1. Левое определение может быть выражено однородными членами с общим основным словом (последним словом группы). Тогда между ними стоит союз and (или or) или дефис (-) после первого компонента:

air conditioning and pressurization system
система обогрева и наддува кабины

effort- and time-consuming work
работа, требующая больших затрат времени и усилий

2. Слова, входящие в группу, могут быть соединены сочинительной связью, обозначаемой дефисом (-), знаком дроби (/) или запятой:

density-resistivity investigation (density, resistivity, investigation)
исследование отношения плотности к удельному сопротивлению

§ 87. В тех случаях, когда существительное (основное слово группы) имеет, помимо нескольких левых определений, еще и правое, рекомендуется временно опустить все левые определения, заменив их местоимением «какой-то» (например, «какое-то устройство»), и перевести прежде всего основное слово и правое определение, а затем вернуться и перевести опущенные левые определения.

Существительное с правыми определениями

§ 88. Правое определение может быть выражено существительным с предлогом (или группой существительного), герундием с предлогом, причастием, инфинитивом. Кроме того, правым определением к существительному может быть прилагательное, несвободное словосочетание «существительное с предлогом» (типа *under consideration*) и приложение. Рассмотрим последние три случая более подробно.

§ 89. В качестве правого определения к существительному могут употребляться некоторые прилагательные, чаще всего *necessary* — «необходимый», *present* — «имеющийся», *possible* — «возможный», *available* — «имеющийся», *imaginable* — «вообразимый», *compton* — «присущий», «свойственный», *close* — «расположенный близко», *free* — «свободный (от чего-л.)».

Прилагательное может иметь при себе пояснительные слова.

Прилагательное с пояснительными словами переводится обычно причастным оборотом или определительным придаточным предложением:

Gases are composed of molecules free to vibrate in all directions.

Газы состоят из молекул, которые могут свободно двигаться во всех направлениях.

Прилагательное, не имеющее пояснительных слов, при переводе, как правило, ставится перед существительным, к которому оно относится:

Germanium is a material used in most transistors and crystal rectifiers available.

Германий — это элемент, используемый в большинстве имеющихся полупроводниковых триодов и кристаллических выпрямителей.

§ 90. В функции правого определения нередко выступают сочетания типа «*under consideration*», представляющие собой несвободные словосочетания, состоящие из существительного и предлога. Они переводятся определительным придаточным предложением, причем существительному при переводе будет соответствовать глагол-сказуемое:

the designs under consideration...

конструкции, которые рассматриваются ...

the particles under investigation...

частицы, которые исследуются ...

the project under way...

проект, который разрабатывается ...

the speed indicator under development...

указатель скорости, который разрабатывается ...

the propellants in use...

топлива, которые используются ...

the generator in operation...

генератор, который используется (работает) ...

the power plant in existence...

силовая установка, которая существует ...

the aircraft in service...

самолет, который находится в эксплуатации ...

the problem in point...

проблема, о которой идет речь ...

the problem in question

проблема, о которой идет речь...

the method of interest

метод, который представляет интерес...

Правые определения такого типа можно переводить также причастием. Например, вместо «конструкции, которые рассматриваются», можно сказать «расматриваемые конструкции». Значение указанных словосочетаний не всегда легко вывести из значения составляющих компонентов. Поэтому их рекомендуется запомнить.

§ 91. В функции правого определения может выступать приложение, представляющее собой определение особого вида. Оно выражается именем существительным и стоит обычно после существительного, к которому

относится. Как правило, при существительном-приложении имеются пояснительные слова. Приложение выделяется запятыми или тире:

The units described above—a compressor, combustion chamber and turbine—are the fundamental parts of any turbine.

Описанные выше агрегаты — компрессор, камера сгорания и турбина — являются основными компонентами любого ТКВРД.

При переводе существительное-приложение следует ставить в том же падеже, что и существительное, к которому оно относится:

The world heard of the jet engine, a new power plant so superior to the reciprocating-piston engine, in the year of 1938.

Мир впервые узнал о реактивном двигателе — силовой установке, во многом превосходящей поршневой двигатель, — в 1938 году.

В некоторых случаях, когда приложение представляет собой развернутое определение, при переводе рекомендуется ставить перед приложением слова «то есть», «а именно», «иначе говоря», «который является» и т. д.:

The idea of an automatic computer, a machine able to perform a great number of operations is more than 120 years old.

Идея создания автоматического счетно-решающего устройства, то есть машины, способной выполнять огромное количество операций, возникла более 120 лет тому назад.

§ 92. Особо следует рассмотреть случай, когда имя существительное-приложение, сопровождаемое определительным придаточным предложением или причастным оборотом, относится ко всему предшествующему высказыванию:

The air gets thinner as we climb, a fact which is well known to mountain climbers.

Воздух становится более разреженным с подъемом на высоту — факт, который хорошо известен альпинистам.

В этих случаях существительное, стоящее после запятой, как бы суммирует то, что было сказано выше. Как правило, такие существительные имеют значение «факт», «вопрос», «проблема», «принцип», «свойство». Перед таким существительным при переводе рекомендуется ставить тире. Иногда такое существительное сопровождающим его определительным придаточным предложением или причастным оборотом передается отдельным предложением («Этот факт хорошо известен альпинистам»).

ЭМФАТИЧЕСКИЕ КОНСТРУКЦИИ

Эмфатические конструкции служат для выделения того или иного члена предложения.

Инверсия

§ 93. Наряду с обычным для английского языка порядком слов, при котором сказуемое стоит после подлежащего, возможны случаи, когда сказуемое или его часть предшествует подлежащему. Такой порядок слов называется инверсией, то есть перестановкой. Он имеет особое смысловое значение и часто используется для того, чтобы выделить слова, к которым хотят привлечь внимание. Встречается несколько типов инверсии. Рассмотрим подробнее, как построено предложение, содержащее инверсию, чем обусловлена инверсия и как она влияет на перевод.

§ 94. Первый случай. В начале предложения может стоять вторая часть сказуемого (причастие I или II, существительное с предлогом или прилагательное), за ней первая часть формы глагола *be* — *is*, *are* — *и*, нако-

неч, подлежащее. Между второй и первой частями сказуемого могут находиться пояснительные слова (прямое дополнение или обстоятельственные слова).

1. The fundamental principles of alternating current are presented in this chapter. Included are the basic principles of some alternating current machines.

2. This is the chromosphere, a very inhomogenous region consisting principally of hydrogen, helium, and calcium. Surrounding the chromosphere is a thin, hot atmosphere — the corona.

3. There arises many problems in connection with the interplanetary travel. Of special interest is the gravitational situation.

Благодаря инверсии логически выделенное подлежащее оказывается в конце предложения. (В переводе слова, на которые делается логический упор, также ставится в конце предложения.)

Перевод предложений с инверсией такого типа (см. пример 2) рекомендуется начинать с пояснительных слов (the chromosphere — «хромосфера»), затем перевести сказуемое (is surrounding — «окружает») и после этого — подлежащее (atmosphere — «оболочка»).

Если нет пояснительных слов (пример 1), следует перевести сначала сказуемое, затем подлежащее. При этом для связи данного предложения с предыдущим часто приходится вводить дополнительные слова «при этом», «здесь же» и др.

§ 95. Второй случай. В начале предложения могут стоять обстоятельственные слова. В качестве обстоятельственных слов часто употребляются такие слова, как only — «только», never before — «никогда раньше... не», no longer — «больше ... не», not only ... (but) — «не только ... (но)», not until — «только в», «только после», «только тогда, когда».

В этом случае инверсия служит для выделения этих слов и связанных с ними сказуемого:

Never before has a new class of weapon been attended so much publicity as a guided missile.

Only with the knowledge of speed, gravity and friction did we begin to realize the details of a rocket's performance.

В такого рода предложениях первая часть сказуемого располагается перед подлежащим, а вторая (смысловая) — после подлежащего (has a new class of weapon been attended). Если сказуемое выражено одним смысловым глаголом (begin), то в этом случае перед подлежащим ставится вспомогательный глагол to do (в личной форме), а смысловой глагол следует за подлежащим (did we begin to ...).

При переводе подобных предложений с инверсией обстоятельственные слова остаются на первом месте, за ними следует подлежащее, затем сказуемое.

Исключение с точки зрения порядка слов при переводе составляют предложения, начинающиеся словами not only ... (but):

Around the Earth lies an enveloping layer of gas known as the atmosphere. Not only does life itself depend

1. В данной главе изложены основные свойства переменного тока. Здесь же изложены основные принципы действия некоторых моторов переменного тока.

2. Это — хромосфера, очень неоднородный слой, состоящий в основном из водорода, гелия и кальция. Хромосферу окружает разреженная оболочка, обладающая высокой температурой, — корона.

3. В связи с межпланетными полетами возникает много проблем. Особый интерес представляют вопросы, связанные с притяжением.

Раньше ни один новый тип вооружения не привлекал к себе такого большого внимания, как теперь управляемые ракеты.

Только узнав скорость, силу притяжения и трения ракеты, мы стали представлять себе подробно летные характеристики ракеты.

Землю окружает слой газа, называемый атмосферой. От этого слоя газа зависит не только жизнь (иа

on this gas but flight depends on it also.

Engine mounts play an extremely important role in the successful engine installation. Not only must they be light in weight but they must afford access to the engine.

земле), с ним также связан и полет (самолета).

Рамы двигателя играют чрезвычайно важную роль в правильной установке двигателя. Они не только должны быть легкими по весу, они должны также обеспечивать доступ к двигателю.

В этом случае не рекомендуется начинать перевод сразу с *not only*. Прежде всего следует уточнить по смыслу, какие слова или части высказывания противопоставляются, и отнести при переводе слова «не только» к этим частям высказывания.

§ 96. Третий случай. На первом месте в предложении, содержащем инверсию, может стоять один из союзов *not*, *neither* или *so*:

Carbon dioxide does not burn, nor does it support combustion.

Двухокись углерода не горит и не поддерживает горения.

В этом случае инверсия обусловлена употреблением указанных союзов.

При переводе союзам *not* и *neither* обычно соответствуют слова «также ... и не», «вместе с тем ... не», «и не». (Отрицание «не» следует относить к сказуемому русского предложения.)

Союз *so* переводится обычно словами «тоже», «также», «аналогичным образом».

Сказуемое, стоящее за союзом *so*, всегда представлено не полностью, а лишь вспомогательным или модальным глаголом или же глаголом *to do*:

Weight and lift are closely associated, so are thrust and drag.

Вес и подъемная сила тесно между собой связаны, аналогичным же образом связанны между собой тяга и лобовое сопротивление.

В данном примере сказуемое во втором предложении по смыслу выражает то же, что и в первом (*are associated*), но оно представлено в сокращенном виде (*are* вместо *are associated*). При переводе рекомендуется повторить сказуемое первого предложения полностью.

§ 97. Четвертый случай. На первом месте в предложении может стоять прилагательное, за которым следуют союзы *as* или *though*:

This new branch of science, young as it is, touches on many important practical applications.

Эта новая отрасль науки, хотя она и возникла недавно, лежит в основе многих важных практических применений.

Такие предложения имеют уступительное значение. Они переводятся придаточными предложениями с союзами «хотя и», «как ... и», «каким бы ... и», которые ставятся в начале предложения.

Глагол *may*, входящий иногда в состав сказуемого уступительного предложения, обычно не переводится:

Strange though it may seem, these systems have similar tactical duties to perform.

Как это ни странно, эти системы вмеют аналогичные тактические задачи.

Выделение сказуемого посредством глагола *to do*

§ 98. Если в английском предложении после подлежащего стоят подряд два глагола — *do* и за ним другой глагол (в форме инфинитива без *to*), это показывает, что мы имеем дело с особой формой выделительной конструкции.

Глагол **to do** (в форме настоящего или прошедшего времени — **do**, **does**, **did**) в данном случае используется для усиления глагола-сказуемого (стоящего непосредственно за ним):

It is believed that the atmosphere of Mars does offer protection from harmful radiation.

Иногда между глаголом **to do** и сказуемым может стоять наречие или могут быть другие обстоятельственные слова (например, **does**, **indeed**, **offer...**).

В переводе для выделения мысли используются усилительные слова типа «действительно», «фактический», «на самом деле», «все же», которые ставятся перед глаголом-сказуемым («.. действительно предохраняет ...»).

Если в английском предложении, помимо глагола **to do**, используются для усиления еще и лексические средства (слова типа **Indeed**, **really** — «действительно»), то дополнительно вводить слова для усиления не следует.

Выделительная конструкция типа “**it is ... that**”

§ 99. 1. Эта конструкция служит для выделения любого члена предложения, кроме сказуемого.

Выделяемый член предложения находится между элементами этой конструкции:

It is radiation given off in the disintegration of these elements that produces ionization in the gas.

Именно излучение, возникающее при распаде этих элементов, вызывает ионизацию газа.

В переводе для выделения используются усилительные слова типа «именно», «только» и т. п.

2. Вариантом выделительной конструкции “**It is ... that**” является конструкция “**It was not until ... that (when, where)**”. В этом случае перед выделяемым словом при переводе ставятся слова «только», «только в», «только после», «только тогда, когда».

It was not until the seventeenth century that man began to understand pressure.

Только в 17 веке человек начал осознавать, что такое давление.

ЭЛЛИПТИЧЕСКИЕ КОНСТРУКЦИИ

§ 100. Эллиптические конструкции — это неполные придаточные предложения, которые обычно состоят из союза и прилагательного или существительного (с предлогом или без предлога). В таких придаточных предложениях недостает одного или двух главных членов: сказуемого (или его части) или сказуемого и подлежащего.

В научно-технической литературе встречается несколько видов эллиптических конструкций. Рассмотрим их построение и особенности перевода.

Основные виды эллиптических конструкций

§ 101. Эллиптические конструкции с союзами **although** — «хотя», **though** — «хотя», **If** — «если», **once** — «если», **when** — «когда», **while** — «в то время, как», «когда» характеризуются пропуском подлежащего и глагола-связки **to be**:

1. **A bullet cannot alter its course while in flight.**

1. Пуля не может изменить траекторию, когда она находится в полете.

2. **When in orbit about the Earth or Sun, the vehicle will obey the laws of planetary motion established by Galileo and Kepler.**

2. Когда корабль движется по орбите вокруг Земли или Солнца, он подчиняется законам движения планет, открытым Галилеем и Кеплером.

В первом примере значение подлежащего эллиптической конструкции (*while in flight*) раскрывается в предшествующей части предложения (*bullet* — «пуля»). При переводе таких эллиптических конструкций подлежащее, уже названное в предшествующей части предложения («пуля не может ...»), заменяется соответствующим личным местоимением («пуля не может ... когда она ...»).

Во втором примере лексическое значение подлежащего эллиптической конструкции (*when in orbit*) раскрывается в последующей части предложения («корабль»). При переводе существительное-подлежащее переносится в придаточное предложение («когда корабль»), а в последующей части предложения в качестве подлежащего используется соответствующее местоимение («ои»).

Возможен и другой способ перевода:

When in orbit ... Находясь на орбите ...

§ 102. Эллиптические конструкции с уступительными союзами *whatever* — «какой бы ни», «независимо от», *no matter how* и *however* — «как бы ни», «независимо от», «хотя и» характеризуются пропуском сказуемого (*can be*, *may be*), а иногда и подлежащего (см. пример 3):

1. *Whatever the shape of the magnet, it has two poles.*
2. *No matter how weak the initial impulse, it gives the body a forward motion.*
3. *An atomic bomb explosion in any part of the world, however remote, can be registered immediately.*

Такие эллиптические конструкции

1. Какова бы ни была форма магнита, он имеет два полюса.

2. Каким бы слабым ни был первоначальный импульс, он сообщает телу поступательное движение.

3. Взрыв атомной бомбы в любом месте земного шара, независимо от расстояния до него, может быть немедленно зарегистрирован.

рекомендуется переводить, пользуясь следующими моделями:

whatever the method (size)...

каков бы ни был метод (размер и т. д.)...
независимо от метода (размера и т. д.)...

no matter how strong (long)...

каким бы прочным (длинным) ни был...
независимо от прочности (длины)...

however simple (difficult)...

каким бы простым (трудным) ни был...
независимо от простоты (трудности)...

Когда за союзом следует прилагательное, при переводе союза вторым способом («независимо от ...») английское прилагательное передается русским существительным.

К этой группе эллиптических конструкций можно отнести конструкцию с парным союзом *whether ... or:*

Every body, whether a planet or a space ship, obeys the law of Universal gravitational attraction.

Каждое тело, будь то планета или космический корабль, подчиняется закону всемирного тяготения.

§ 103. Эллиптические конструкции «союз+прилагательное» (часто с суффиксами *-able*, *-ible*) переводятся по следующей модели:

If (when, where) necessary...

Если (когда; там, где) это необходимо...

If (when, where) possible...

Если (когда; там, где) это возможно...

§ 104. Эллиптическая конструкция "If any (If anything)" характеризуется пропуском оборота *there is (are) (If there is any)*.

Эта конструкция обычно стоит или после существительного, к которому она относится, или «вклинивается» между существительным и его правым определением:

The nucleus determines the radioactive properties, if any of the atom.

Ядро определяет радиоактивные свойства атома, если он таковыми обладает.

В качестве рабочего варианта перевода конструкции «*If any*» можно использовать оборот «если таковые имеются», затем перевод редактируется в соответствии со смыслом всего предложения.

НЕКОТОРЫЕ КОНСТРУКЦИИ С ГЛАГОЛОМ

Двойное управление

§ 105. В английской научно-технической литературе встречаются случаи, когда глагол связан с последующим существительным при помощи *д в у х* разных предлогов (а не одного, как обычно). Между этими предлогами стоит союз *and* или *or*.

Аналогичные конструкции существуют и в русском языке, но они возможны, когда оба предлога требуют одного падежа (например, «приборы проверялись до и после полета»).

Рассмотрим два случая такого управления.

§ 106. Один глагол при помощи разных предлогов управляет одним существительным:

Ap antenna radiates most efficiently at or near its fundamental wave.

Антенна излучает наиболее эффективно на своей основной волне или вблизи от этой волны (от нее).

В этом примере оба предлога (*at* и *near*) относятся к одному существительному (*wave*). В русском языке в данном случае эти предлоги требуют разных падежей, поэтому существительное должно быть повторено при переводе дважды («... излучает на ... волне или вблизи от ... волны»).

§ 107. Два глагола с разными предлогами (или один с предлогом, а другой без предлога) управляют одним существительным:

Most of the equipment was well known to, and practised by, them.

Большая часть этого оборудования была им хорошо знакома и использовалась ими.

В этом примере один глагол (*was known*) связан со словом *them* при помощи предлога *to*, а другой (*was practised*) — при помощи предлога *by*. В русском переводе слово *them* (дополнение в разных падежах) повторяется с каждым глаголом-сказуемым отдельно («... им... знакома и использовалась ими»).

Заметьте, что каждый такой предлог в английском предложении часто отделяется запятой от того существительного, к которому он относится.

Конструкция «*to have + существительное + причастие II*» (типа *to have engines installed*)

§ 108. Эта конструкция показывает, что действие производится не самим подлежащим, а выполняется для него кем-то другим:

Some airplanes have engines installed in the wings.

На некоторых самолетах двигатели устанавливаются в крыльях.

При переводе такой конструкции приходится перестраивать все предложение: подлежащим становится существительное, стоящее между глаголом *have* и причастием *II*, сказуемое образуется на основе причастия *II* (*installed* — «устанавливаются», а бывшее подлежащее (*some airplanes*) переводится существительным в косвенном падеже (часто с предлогом). Падеж (и/или предлог) этого существительного определяется в зависимости от смысла всего предложения: «...двигатели устанавливаются в крыльях (где? на самолетах)».

Конструкция «to have + существительное + инфинитив» (типа to have the body move)

§ 109. В данной конструкции глагол to have имеет значение побуждения к действию и переводится на русский язык словами «заставить», «сделать так, чтобы»:

It is possible in the transformer of this type to have part of the winding serve as both primary and secondary.

В трансформаторе данного типа можно сделать так, чтобы часть обмотки служила одновременно первичной и вторичной обмотками.

УКАЗАНИЯ ПО ВЫБОРУ ЗНАЧЕНИЯ СЛОВА

§ 110. Правильный и быстрый выбор значения слова и перевод по догадке требуют умения выделить в предложении те его элементы, которые являются основными для перевода данного слова.

Выбор значения существительного

§ 111. При переводе существительного, имеющего несколько значений, необходимо прежде всего учитывать значение его правого определения. Сравните:

the advance of science	прогресс науки
the advance of an army	наступление армии

Очевидно, что именно правое определение, выраженное существительными science «наука» и army «армия» определило перевод слова **advance** в первом случае как «прогресс», а во втором — как «наступление».

Контекст иногда дает возможность определить значение незнакомого существительного без словаря по его правому определению и общему смыслу предложения:

The launching of the first Earth satellite was a great victory of the Soviet Union. Запуск первого искусственного спутника Земли был большой победой Советского Союза.

Несомненно, что перевод незнакомого слова **launching** в данном случае не требовал обращения к словарю, поскольку его правое определение «первого искусственного спутника» и последующая часть предложения «был большой победой Советского Союза» дает все основания для перевода слова **launching** как «запуск».

Выбор значения прилагательного

§ 112. При переводе прилагательного на русский язык необходимо учитывать значение существительного, к которому данное прилагательное относится.

Сравните:

close contact	плотный контакт
close battle	ближний бой
close translation	точный перевод

Из примеров видно, что выбор значения прилагательного **close** целиком зависит от значения существительных **contact** — «контакт», **battle** — «бой» и **translation** — «перевод».

Выбор значения глагола-сказуемого в действительном залоге

§ 113. 1. При выборе значения переходного глагола (глагола, имеющего прямое дополнение) следует учитывать в первую очередь значение прямого дополнения.

Сравните:

to launch a rocket
to launch a ship
to launch an attack

запустить ракету
спустить на воду корабль
начать наступление

Примеры показывают, что перевод глагола **launch** целиком определяется значением существительного — прямого дополнения: **rocket** — «ракета», **ship** — «корабль», **attack** — «наступление».

2. При переводе предложения, в котором неизвестными словами являются глагол-сказуемое и прямое дополнение, необходимо вначале найти в словаре значение прямого дополнения, а затем уже, опираясь на значение прямого дополнения, выбрать значение глагола-сказуемого:

Electric current **accomplishes** the task more effectively. Электрический ток выполняет эту задачу более эффективно.

Если в данном предложении неизвестными словами являются **accomplishes the task**, то вначале определяется значение слова **task** — «задача», а затем на его основе переводится слово **accomplishes** — «выполняет». Перевод этого слова, вероятно, не потребует даже словаря, если мы временно выразим его значение через глагол «делать»:

Electric current **accomplishes** the task...

Электрический ток «делает», т. е. выполняет эту задачу...

3. Выбор значения переходного глагола в некоторых случаях определяется не только значением прямого дополнения, но и значением подлежащего.

Например, глагол **to hold** имеет следующие основные значения: «держать», «сдерживать»; «владеть»; «вмешать»:

This room **holds** 20 people.

Эта комната вмещает 20 человек.

В этом предложении выбор значения «вмешать» определяется как значением прямого дополнения (20 человек), так и значением подлежащего (этота комната).

§ 114. 1. При выборе значения непереходного глагола необходимо в первую очередь обратить внимание на значение подлежащего.

Сравните:

a radio wave **travels**
an airplane **travels**
the tips of propeller blades **travel**

радиоволна распространяется
самолет летит
концы лопастей воздушного винта
вращаются

Как показывают примеры, выбор значения глагола **to travel** полностью определяется значением подлежащего.

2. Перевод непереходного глагола может также определяться предложным дополнением. В этих случаях следует обратить внимание на предлог, связывающий глагол с дополнением. Многие непереходные глаголы имеют различное значение в зависимости от предлога, вводящего это дополнение. Например, глагол **to look** имеет значение «смотреть» и «искать».

В значении «смотреть» он сочетается с предлогом **at**, а в значении «искать» — с предлогом **for**:

to look at a person
to look for a person

смотреть на человека
искать человека

В словарях употребление глагола в определении значении с тем или иным предлогом обычно указывается следующим образом: **look at** I. смотреть (**at**); 2. искать (**for**).

Иногда значения глаголов с предлогами и наречиями даются после знака **0**.

Выбор значения глагола-сказуемого в страдательном залоге

§ 115. 1. При переводе глагола-сказуемого в страдательном залоге необходимо учитывать смысловую связь глагола-сказуемого с подлежащим.

Сравните:

rockets are launched	ракеты запускаются
ships are launched	корабли спускаются на воду

Очевидно, что различный перевод сказуемого *are launched* определяется значением подлежащего.

2. Следует также учитывать смысловую связь сказуемого с предложной группой, стоящей после него:

The guns are carried in the wings	Пулеметы устанавливаются в крыльях самолета.
-----------------------------------	--

При переводе незнакомого глагола-сказуемого можно широко применять догадку, так как глагол-сказуемое имеет особенно много прямых смысловых связей в предложении (с подлежащим, дополнением, обстоятельствами).

Выбор значения причастия I, причастия II и герундия

§ 116. Когда причастие I (или герундий) выполняет функцию определения к существительному, то при переводе следует учитывать значение того существительного, которое оно определяет. Между причастием I (или герундием) и определяемым существительным в этом случае существует смысловая связь, аналогичная связи между прилагательным и существительным.

Сравните:

moving parts	движущиеся части
moving wave	бегущая волна

При переводе причастия I, входящего в определительный причастный оборот, следует учитывать значение существительного, являющегося дополнением в данном обороте. Между причастием I и существительным-дополнением имеется такая же связь, как между глаголом и дополнением.

Сравните:

a substance offering great resistance	вещество, оказывающее большое сопротивление
an airplane offering much advantage in long distance flights.	самолет, обладающий большими преимуществами в полетах на дальние расстояния.

§ 117. При переводе причастия II, входящего в определительный причастный оборот, необходимо учитывать значение того существительного, которое оно определяет.

Сравните:

The resistance offered by the conductor...	Сопротивление, оказываемое проводником...
The advantage offered by this device...	Преимущество, которое дает этот прибор...

Выбор значения наречия

§ 118. Наречие может относиться к глаголу, и тогда при переводе необходимо учитывать значение глагола, к которому оно относится.

Сравните:

to work hard	работать много
to try hard	пытаться настойчиво

Если наречие предшествует глаголу, то рекомендуется сначала перевести глагол, а затем перейти к переводу наречия, например:

The magnitude of these parameters **solely** depends on...

Величина этих параметров зависит от...

↓
как?

исключительно

§ 119. Наречие может относиться к прилагательному. Последовательность перевода слов в этом случае будет такова: сначала переводится прилагательное, а затем наречие.

extremely complicated problems

↓
сложные проблемы

в какой степени?

↓
очень

очень сложные проблемы

Если неизвестно значение наречия, рекомендуется временно заменить наречие словами «как-то», «каким-то образом» (если оно относится к глаголу) или «в какой-то степени» (если наречие относится к прилагательному) и обратиться к словарю только после перевода всего предложения.

§ 120. Наречие может относиться к другому наречию, прилагательному в сравнительной степени или предлогу. В этом случае наречие имеет усиительное значение «очень», «весьма», «чрезвычайно» и т. п.

В качестве усиительных особенно часто используются наречия **well**, **much**, **far**:

The speed was **well** under 200 miles.

Скорость была **намного** меньше 200 миль.

This work is **much** more difficult than...

Эта работа **значительно** труднее, чем...

In this type of engine there are **far** greater advantages than...

Данный тип двигателя имеет **гораздо** большие преимущества, чем...

ПРИЛОЖЕНИЯ

1. Наиболее употребительные слова и сокращения, заимствованные из латинского языка.

A.D. (Anno Domini)	нашей эры
a.m. (ante meridiem)	до полудня
a priori	заранее, независимо от опыта
B.C. (before Christ)	до нашей эры
circa	приблизительно, около
e.g. (exempli gratia)	например
etc. (et cetera)	и так далее
i.e. (id est)	то есть
in situ	на месте
N.B. (nota bene)	примечание, отметка
p.m. (post meridiem)	после полудня
pro et con (pro et contra)	за и против
terra incognita	незнакомая область
vers, vs (Versus)	против
vice versa	в зависимости от (чего-то), наоборот
viz	а именно

2. Чтение наиболее употребительных математических обозначений.

0.28	nought point twenty eight
2.50	two point five nought
10,000	ten thousand
$a = b$	a equals b
$a \neq b$	a is equal to b
$a > b$	a is not equal to b
$a < b$	a is greater than b
$a \gg b$	a is less than b
$a \ll b$	a is much greater than b
$a \approx b$	a is much less than b
$a \approx b$	a is approximately equal to b
a_b	a sub b ; a subscript b
$a + b$	a plus b
$a - b$	a minus b
$a \times b$	a times b ; a multiplied by b
$a \div b$	a divided by b
$\frac{a}{b}$	a over b
$\frac{ab}{cd}$	a times b over c times d
$[a]$	a in brackets
(a)	a in parentheses

kv kilovolt	киловольт
kw kilowatt	киловатт
kwhr kilowatthour	киловатт-час
l liter	литр
m meter	метр
Ma microampere	микроампер
MeV	мэгаэлектроновольт
Mf microfarad	микрофарада
MMf micromicrofarad	микромикрофарада
M or mu micron	микрон
mph miles per hour	миль в час
ma milliampere	миллиампер
mg milligram	миллиграмм
mm millimeter	миллиметр
mv millivolt	милливольт
min minute	минута
oz ounce	унция
ppm parts per million	миллионные доли
lb pound	фунт
lb-ft pound-foot	фунто-фут
lb-in. pound-inch	фунто-дюйм
psf pounds per square foot	фунты на квадратный фут
R. F. Radio Frequency	высокая частота
rpm revolutions per minute	обороты в минуту
rps revolutions per second	обороты в секунду
rms root mean square	среднее квадратичное
sec second	секунда
sq ft square foot	квадратный фут
sq.in. square inch	квадратный дюйм
v volt	вольт
va volt-ampere	вольт-ампер
W watt	ватт
wt weight	вес
yd yard	ярд
yr year	год

kv kilovolt	ки тово льт
kw kilowatt	киловатт
kwhr kilowatthour	киловатт-час
l liter	литр
m meter	метр
Ma microampere	микроампер
MeV	мэгэлектроновольт
Mf microfarad	микрофарада
MMf micromicrofarad	микромикрофарада
M or μu micron	микрон
mph miles per hour	миль в час
ma milliampere	миллиампер
mg milligram	миллиграмм
mm millimeter	миллиметр
mv millivolt	милливольт
min minute	минута
oz ounce	унция
ppm parts per million	миллионные доли
lb pound	фунт
lb-ft pound-foot	фунто фут
lb-in. pound-inch	фунто-дюйм
psf pounds per square foot	фунты на квадратный фут
R. F. Radio Frequency	высокая частота
rpm revolutions per minute	обороты в минуту
rps revolutions per second	обороты в секунду
rms root mean square	среднее квадратичное
sec second	секунда
sq ft square foot	квадратный фут
sq.in. square inch	квадратный дюйм
v volt	вольт
va volt-ampere	вольт ампер
W watt	ватт
wt weight	вес
yd yard	ярд
yr year	год

АНГЛО-РУССКИЙ СЛОВАРЬ

Словарь содержит лексику основных текстов, предназначенную для усвоения, слова, которые учащиеся должны знать до начала работы по данному учебнику, и некоторые слова, встречающиеся в упражнениях.

Слова основных текстов сопровождаются цифрами, указывающими номер урока, в котором это слово встречается, и порядковый номер, под которым оно рассматривается в поурочной разработке. Например, *abandon* [ə'bændən] 3,14: цифра 3 показывает, что это слово встречается в третьем уроке, а цифра 14 — что в поурочной разработке этого урока оно рассматривается под номером 14. Слова, взятые из дополнительных списков в поурочных разработках, имеют буквенное обозначение *o/c*.

Цифрой 0 обозначены слова, которые должны быть известны учащимся до начала работы по учебнику.

Эти обозначения имеют целью помочь преподавателю при составлении контрольных и проверочных работ после прохождения отдельных разделов учебника. Они также дают возможность учащемуся обратиться еще раз к поурочной разработке, если значение какого-либо слова недостаточно прочно усвоено.

В словаре принятые следующие условные обозначения:

a — прилагательное
adv — наречие
cj — союз
n — существительное
p.p. — причастие прошедшего времени
prp — предлог
v — глагол

А

abandon [ə'bændən] 3,14 *v* отказываться (от чего-л.).

ability [ə'bɪlɪti] 0 *n* способность, умение; возможность.

able ['eɪbl] 0 *a* способный; *be able* —

мочь, быть в состоянии.

about [ə'baʊt] 0 *prp* 1. вокруг (например; вращаться вокруг оси); 2. по (например, двигаться по местности); 3. о, об, относительно (например, говорить о чем-л.); 4. около, приблизительно (например, около 1 см.).

above [ə'bʌv] 0 *prp* 1. над (чем-л.); 2. свыше, выше, больше чем (например, свыше 5 км).

absence [ə'æbsəns] 4,5 *n* отсутствие.
absent ['æbsənt] 4,5 *a* отсутствующий; *be absent* — отсутствовать.

absorb [ə'bɔ:rb] 0 *v* поглощать, абсорбировать, впитывать.

abundance [ə'bʌndəns] 5,25 *n* 1. изобилие, большое количество; 2. рас пространенность.

abundant [ə'bʌndənt] 5,25 *a* 1. обильный, богатый (чем-л.); 2. распространенный.

abundantly [ə'bʌndəntli] 5,25 *adv* обильно, широко.

accelerate [æk'seləreɪt] 0 *v* ускоряться, двигаться с ускорением.

acceleration [æk'selə'reɪʃn] 0 *n* ускорение.

accept [ək'sept] 1,6 *v* 1. принимать (что-л.); 2. соглашаться (с чем-л.).

acceptable [ək'septəbl] 1,6 *a* приемлемый.

acceptance [ək'septəns] 1,6 *n* принятие; признание, одобрение.

accident [ə'ksɪdənt] 9,22 *n* несчастный случай; авария.

accidental [ə'ksɪ'dentəl] 9,22 *a* случайный.

accidentally [ə'ksɪ'dentəli] 9,22 *adv* случайно.

accompany [ə'kʌmpkrəp] 9,24 *v* сопровождать, сопутствовать.

accomplish [ə'kɔmplɪʃ] 0 *v* выполнять, осуществлять.

accordance [ə'kɔ:dəns] 0 *n* соответствие; *In accordance with* в соответствии с (чем-л.), согласно (чему-л.).

accordingly [ə'kɔ:dɪglɪ] 0 *adv* соответственно; 9,6 *cj* следовательно, поэтому.

according to [ə'kɔ:dɪg tu] 0 *prep* согласно (чему-л.).

account [ə'kaʊnt] 0 *n* 1. учет, принятие во внимание; 2. обзор, доклад; **account (for)** 8,6 *v* 1. объяснять; 2. учитывать; 3. компенсировать (что-л.); **account is given of (smth)** приводятся данные (сведения) о (чем-л.); **account is taken of (smth)** учитывается, принимается во внимание (что-л.); **be of no account** не иметь значения; **give account of (smth)** давать сведения, описывать (что-л.); **on account of** из-за, вследствие; **take into account** учитывать, принимать во внимание.

accuracy ['ækjurəsɪ] 0 *n* точность.

accurate ['ækjurɪt] 0 *a* точный; **to be more accurate** 11,13 точнее, говоря точнее.

achieve [ə'tʃi:v] 0 *v* достигать.

achievement [ə'tʃi:vment] 0 *n* достижение.

acquire [ə'kwaɪə] 5,3 *v* 1. приобретать; 2. достигать.

acquisition [ə'kwaɪəmənt] 5,3 *n* приобретение.

across [ə'krɔs] 0 *prep* 1. через, сквозь (что-л.); поперек, в поперечном направлении; 2. на концах (о разности потенциалов); *adv* 1. поперек; 2. по ту сторону.

act [ækt] 0 *v* действовать; **acted on p.p.** на который действует.

action ['ækʃn] 0 *n* действие; **bring into action** 6,26 приводить в действие.

actual ['æktjuəl] 0 *a* действительный, фактический.

actually ['æktjuəli] 0 *adv* в действительности, на самом деле; фактически.

adapt [ə'dæpt] *v* приспособливать(ся).

add [æd] 7,16 *v* 1. добавлять, дополнять, присоединять; 2. складывать (числа, величины); 3. увеличивать.

addition [ə'dɪʃn] 7,16 *n* 1. дополнения, добавления; 2. сложение; *In addition* в дополнение к сказанному, помимо того, кроме того; *in addition to* кроме (чего-л.), в дополнение к (чему-л.).

additional [ə'dɪʃənl] 7,16 *a* дополнительный.

adequate ['ædɪkwid] 1,16 *a* пригодный, подходящий, соответствующий, правильный, удовлетворительный; **be adequate** подходить, быть пригодным (для чего-л.); соответствовать поставленной цели.

adequately ['ædɪkwidli] 1,16 *adv* удовлетворительно, надлежащим образом.

adjust [ə'dʒast] 0 *v* приспособливать; регулировать.

adjustable [ə'dʒastəbl] 0 *a* регулируемый.

advance [əd've:ns] 0 *n* 1. движение вперед, продвижение; 2. прогресс, успех, достижение, шаг вперед; *v* 1. двигаться вперед; 2. делать успехи (в чем-л.); 3. выдвигать (например, гипотезу).

advanced [əd've:nst] 0 *a* продвинутый, повышенного типа; более глубокий, развитый, новейший, современный, перспективный.

advantage [əd've:ntɪdʒ] 0 *n* преимущественно; **advantage is taken (of smth)** 2,17 используется (что-л.); **take advantage (of smth)** 2,17 использовать (что-л.).

affect [ə'fekt] 10,14 *v* влиять, воздействовать.

after ['a:ftə] 0 *prep* 1. после (чего-л.); 2. за, позади (чего-л.); *cj* после того, как; **after all** 3,13 в конце концов.

again [ə'geɪn] 9,4 *adv* снова, опять; *cj* кроме того; далее; более того; с другой стороны.

against [ə'geinst] *prep* 1. против (чего-л., кого-л.); 2. по отношению (к чему-л.); 3. на фоне (чего-л.).

age [eɪdʒ] 11 *n* 1. возраст; 2. эпоха, век.

ago [ə'gou] 0 *adv* тому назад.

agree [ə'grɪ:] 11,28 *v* 1. соглашаться;

2. соответствовать, совпадать.
agreement [ə'grɪ:tment] 11,28 *0 n* 1. соглашение; 2. соответствие, согласие.
ahead [ə'hed] *adv* вперед; впереди.
aid [eɪd] *0 n* 1. помочь; 2. приспособление (обычно во множественном числе); *v* помогать.
aim [eɪm] *0 n* намерение; цель; *v* стремиться (к чему-л.), иметь целью (что-л.).
air [eə] *0 n* воздух; атмосфера.
airborne ['eəbɔ:n] 11,1 *a* 1. установленный на самолете, бортовой; 2. воздушный, находящийся в воздухе.
aircraft ['eəkra:fɪ] *0 n* 1. летательный аппарат; 2. самолет(ы); 3. авиация.
airplane ['eəplæn] *0 n* самолет.
airtight ['eətایt] *a* непроницаемый для воздуха, герметичный.
alike [ə'laɪk] 2,1 *a* похожий, подобный; *adv* точно так же, подобно, одинаково.
all [ə:l] *0 a* весь, вся, все; *above all* главным образом, прежде всего; *after all* в конце концов; *all over* повсюду; 3,13 *at all* вообще; *first of all* прежде всего.
allow [ə'lau] *0 v* разрешать, позволять, допускать; делать возможным (что-л.); *allow for* учитывать, делать поправку на (что-л.).
allowance [ə'lauəns] *n* допуск, поправка на (что-л.).
all-up ['ə:l'ʌp] 9,11 *a* полный полетный (вес).
almost ['ə:l'moust] *0 adv* почти.
alone [ə'louɪn] *0 a* только, лишь, один лишь, сам по себе.
along [ə'lɔ:g] *0 prep* вдоль, по; *along with* (smth) 7,17 наряду с (чем-л.), вместе с (чем-л.).
already [ə:l'redɪ] *0 adv* уже.
also ['ɔ:lsou] 9,8/*c* *adv* 1. также, тоже; 2. кроме того, более того.
alter ['ɔ:ltə] *0 v* изменять(ся).
alternate ['ɔ:ltə:nætɪv] *0 v* чередовать(ся).
alternating ['ɔ:ltə:nætɪŋ] *0 a* переменный.
alternative ['ɔ:ltə:nætɪv] 7,32 *n* 1. вариант; 2. выбор; 3. выход (из положения); *a* другой, противоположный.
alternatively ['ɔ:ltə:nætɪvli] 9,13 наоборот, напротив, в противоположность этому, с другой стороны.
although ['ɔ:lt'ðou] *0 c/j* хотя.
altitude ['æltɪtju:d] *0 n* высота.
altogether [,ɔ:ltə'geðə] *0 adv* 1. всего; 2. совсем.

always ['ɔ:lweɪz] *0 adv* всегда.
among ['ə'maŋ] *0 prep* среди.
amongst ['ə'mʌŋst] *см.* *among*
amount ['ə'maunt] *0 n* 1. количество;
2. величина; *v* равняться, достигать, составлять.
amplification [ə'mplɪfɪ'keɪʃn] 8,28 *n* усиление.
amplifier ['æmplɪfایə] 8,28 *n* усилитель.
amplify ['æmplɪfای] 8,28 *v* усиливать, увеличивать.
analysis [ə'nalɪsɪs] 2,30 *n* анализ.
analyze ['ænəlaɪz] 2,30 *v* 1. разлагать (на составляющие части), 2. анализировать.
ancient ['eɪnsənt] 3,7 *a* древний; античный.
and [ənd] *0 c/j* 1. и; 2. а; но; *and so forth* 4,34 и т. д.; *and so on* 4,34 и т. д.
and/or ['ənd'ɔ:] *c/j* или то и другое вместе, или по отдельности.
angle ['æŋgl] *0 n* угол.
angular ['æŋgjulə] *0 a* угловой.
another [ə'nɒðə] *0 a* другой; *one another* друг друга.
answer ['a:nsə] *0 n* ответ; *v* отвечать
anti- ['æntɪ-] *pref* противо-, анти-; например; *anti-aircraft* *a* противо воздушный, зенитный.
any ['eŋy] *0 pron* какой-либо (в вопросительном предложении); любой (в утвердительном предложении); *at any rate* во всяком случае; *If any* если вообще (имеется, требуетсяся и т. п.); *not any* никакой (в отрицательном предложении).
anywhere ['eŋwələn] *0 pron* 1. любой, всякий (в утвердительном предложении); 2. кто-нибудь (в вопросительном предложении); 3. никто (в отрицательном предложении).
apart [ə'pa:t] *adv* на расстоянии; *apart from* (smth) 8,8/*c* помимо, кроме (чего-л.).
apparent ['ə'præərənt] 10,29 *a* 1. очевидный, явный; 2. кажущийся, мнимый.
apparently ['ə'præərəntli] 10,29 *adv* очевидно, по-видимому.
appear ['ə'pɪə] *0 v* 1. появляться; 2. (+inf) казаться, оказываться, по-видимому; *It appears that* 3,32 кажется, оказывается, по-видимому.
appearance ['ə'pɪərəns] *0 n* 1. появление; 2. внешний вид.
application [ə'plɪk'eɪʃn] *0 n* 1. применение, использование; 2. приложение (силы).

applied [ə'plaɪd] 0 *a* 1. прикладной; 2. приложенный.

apply [ə'plaɪ] *v* 1. применять(ся); 2. относить(ся).

appreciable [ə'pri:ʃəbl̩] 4,23 *a* заметный, значительный, ощутимый.

appreciably [ə'pri:ʃəbl̩ɪ] 4,23 *adv* заметно, значительно, ощутимо.

appreciate [ə'pri:ʃeɪt] 4,23 *v* 1. (высоко) оценивать; 2. понимать, отдавать себе отчет (в чем-л.).

approach [ə'prəʊtʃ] 0 *n* 1. приближение; 2. подход; метод решения; *v* 1. приближаться; 2. подходить (к вопросу).

appropriate [ə'prɔ:gri:pɪt] *a* соответствующий.

approval [ə'rgru:vəl̩] 12,7 *n* одобрение.

approve [ə'rgru:v] 12,7 *v* 1. одобрять; 2. подтверждать.

approximate [ə'prəksɪmɪt] 0 *a* приблизительный, приближенный.

approximately [ə'prəksɪmətli] 0 *adv* приблизительно.

approximation [ə'prəksɪ'meɪʃn] 0 *n* приближение.

area ['eərɪə] 0 *n* 1. площадь, пространство; 2. область.

arise [ə'raɪz] (*arose, arisen*) 11,14 *v* возникать, появляться.

armo(u)r ['a:mə] 3,20 *n* броня

armo(u)red ['a:məd] 3,20 *a* бронированный.

around [ə'raʊnd] 0 *adv, prp* 1. вокруг; 2. около.

arrange [ə'reɪndʒ] 0 *v* располагать, размещать.

arrangement [ə'reɪndʒmənt] 0 *n* 1. расположение; 2. устройство.

arrival [ə'raɪvəl̩] 10,11 *n* прибытие, поступление.

arrive [ə'raɪv] 10,11 *v* 1. прибывать, приезжать, приходить; 2. достигать.

art [a:t] 7,33 *n* 1. искусство, умение, опыт; 2. область (науки или техники); **state of art** (*state-of-the art*) уровень знаний, уровень технического развития.

article [ə:tɪkl̩] 0 *n* статья.

artificial [,ə:tɪ'fɪʃl̩] 7,33 *a* искусственный.

as [eəz] 0 *prp* как, в качестве; *cj* 1. так как; 2. когда, по мере того как; **as...as** 0 так же... как; **as compared to (with)** 8,29 по сравнению с; **as a consequence** 9,6 следовательно; вследствие этого; **as distinct from (smth)** 8,14 в отличие от (чего-л.); **as early as** 3,17 уже, еще; **as far as** 0 насколько, поскольку; **as far as** (so far as (in so far as)... is concerned 7,30 что касается ... то; as follows 6,28 следующим образом; as for что касается, в отношении; as high as до, вплоть до; as if 8,0 с как если бы; as long as 3,19 пока; до тех пор, пока; as a matter of fact 5,2 фактически, на самом деле; as recently as еще; as soon as как только; as though 8,0 с как если бы; as to что касается, в отношении; as well также; as well as а также (и); as yet 8,0 с еще, до сих пор; so as to 0 так, чтобы.

ascend [ə'send] 0 *v* подниматься; набирать высоту (о самолете).

ascent [ə'sent] 0 *n* подъем.

aside [ə'sайд] 0 *adv* в сторону, в стороне; **aside from (smth)** 8,0 с помимо, кроме (чего-л.).

ask [ə:sk] 0 *v* 1. спрашивать; 2. просить.

aspect ['æspekt] *n* аспект, сторона вопроса.

assemble [ə'sembli] 9,16 *v* собирать; монтировать.

assembly [ə'sembli] 9,16 *n* 1. совокупность (чего-л.), скопление; 2. агрегат, установка, устройство; 3. сборка, монтаж.

assist [ə'sist] *v* помогать.

associate [ə'sou'ei:t] 1,13 *v* связывать(ся), ассоциировать(ся).

associated [ə'sou'ei:tɪd] 1,13 *pr.p* связанный с (ней, ним) (в функции левого определения).

assume [ə'sju:m] 1,17 *v* 1. предполагать; 2. принимать, приобретать; **assuming that** *cj* если предположить, что; если исходить из того, что; **It is assumed that** 11,0 с предполагают, что; **we assume that** мы полагаем, что.

assumption [ə'zʌmpʃn] 1,17 *n* предположение; **it is a safe assumption that** 11,3 есть все основания предполагать, что.

at [æt] 0 *prp* 1. у, около; 2. на, в (*при указании места совершения действия*); 3. в (*при указании момента времени*); **at last** наконец; **at least** 1,15 по крайней мере; **at once** 7,29 сразу.

attack [ə'tæk] 0 *v* 1. приступать (к решению проблемы); 2. воздействовать.

attain [ə'teɪn] 3,12 *v* достигать, добиваться.

attainable [ə'teɪnəbl̩] 3,12 *a* достижимый.

attempt [ə'tempt] 0 *v* пытаться, пробовать, *n* попытка.
attend [ə'tend] 0 *v* 1. посещать (лекции, собрания и т. п.); присутствовать; 2. сопровождать.
attention [ə'tenʃn] 0 *n* внимание; *pay attention* обращать внимание (на что-л.).
attract [ə'trækt] 0 *v* притягивать; привлекать (внимание).
attractive [ə'træktiv] 0 *a* привлекательный, притягательный, заманчивый, перспективный.
attribute [ə'tribju:t] 10,26 *n* свойство, характерный признак; [ə'tribju:t] *v* относить за счет (чего-л.), приписывать (чему-л.).
author [ə'θɔ:r] *n* автор.
auxiliary [ə:g'ziljəri] 0 *a* вспомогательный; добавочный.
availability [ə'veilə'biliti] 4,24 *n* наличие; доступность.
available [ə'veiləbl] 4,24, *a* имеющийся (в распоряжении); доступный; *be available* иметься, получаться.
average ['ævrɪdʒ] 8,0/с *a* средний; среднее число; *on the average* в среднем.
avoid [ə'veid] 7,27 *v* избегать, уклоняться.
avoidable [ə'veidəbl] 7,27 *a* то, чего можно избежать.
await [ə'weɪt] 12,21 *v* ждать, ожидать.
aware [ə'weə] 3,3 употребляется в словосочетании *to be aware of* знать, отдавать себе отчет в (чем-л.).
away [ə'weɪ] *adv* 1. на некотором расстоянии; 2. вдали.
axes ['æksɪz:z] *pl* от axis.
axis ['æksɪz] *n* ось.

В

back [bæk] 0 *adv* назад, обратно; *a* задний.
background ['bækgraʊnd] 5,16 *n* 1. фон; 2. основные положения, основы; 3. подготовка, опыт.
backward ['bækwəd] 0 *a* 1. обратный; 2. отсталый; *adv* назад, в обратном направлении.
badly ['bædli] 0 *adv* 1. плохо; 2. сильно.
bag [bæg] 0 *n* мешок, оболочка
ball [bɔ:l] 0 *n* шар, шарик.
balloon ['bəlu:n] *n* воздушный шар, аэростат; *balloon-borne* *a* 11,1 установленный на аэростате, бортовой.
band [bænd] 6,5 *n* полоса; диапазон.

bank [bæŋk] 0 *v* кренить, накренять.
base [beis] 0 *n* основа; *v* базировать; основывать (на чем-л.); *based on* *prp* на основе, исходя из (чего-л.).
basis ['beisɪs] *n* основание; базис.
be [bi:] (*was, were, been*) 0 *v* 1. быть, являться, представлять собой; 2. находиться, иметь место, происходить; 3. иметь, представлять (в сочетании с существительным с предлогом *of*); 4. должен, следует, необходимо (перед инфинитивом другого глагола).
beam [bi:m] 1,18 *n* луч; пучок лучей.
bear [beə] (*bore, borne*) *v* нести; *bear in mind* 6,3 помнить (о чем-л.); учить (что-л.).
because [bi'kɒz] 0 *cz* потому что, так как; *because of* *prp* из-за, вследствие, благодаря.
become [bi'kʌm] (*became, become*) 0 *v* делаться, становиться.
before [bi'fɔ:] 0 *prp* до; перед; *cz* до того как; прежде чем; *adv* раньше, прежде; *before long* 3,19 недавно, вскоре; *long before* 3,19 задолго до (того как).
begin [bi'gɪn] (*began, begun*) 0 *v* начинать (ся); *to begin with* 9,2 прежде всего, во-первых.
beginning [bi'gɪnɪŋ] 0 *n* начало; *in the beginning* 9,2 сначала, прежде всего.
behave [bi'heɪv] 0 *v* вести себя.
behaviour [bi'heɪvɪə] 0 *n* поведение, свойства.
behind [bi'haind] 0 *prp, adv* позади, за.
belief [bi'li:f] 0 *n* убеждение, мнение; *it is our belief that* 11,0/с мы полагаем, что.
believe [bi'li:v] 0 *v* 1. верить; 2. думать, полагать.
belong [bi'long] 0 *v* 1. принадлежать; 2. относиться (к чему-л.).
below [bi'lou] 0 *prp* 1. под (чем-л.); 2. ниже (чего-л.).
beside [bi'saɪd] *prp* рядом; около.
besides [bi'saɪdz] 0 *prp* кроме; 9,4 кроме этого, помимо этого.
best [best] 0 *a* (превосходная степень от good) самый лучший; *at best* 11,11 в лучшем случае.
better ['bɛtə] 0 *a* сравнительная степень от good) лучший, лучше.
between [bi'twi:n] 0 *prp* между.
beyond [bi'jond] 0 *prp* вне, за пределами, по ту сторону.
big [bɪg] 0 *a* большой.
bind [baɪnd] (*bound*) 0 *v* связывать,

скреплять; **be bound** 6,18 быть вынужденным (*сделать что-л.*).
board [bɔ:d] 0 *n* 1. доска; 2. борт (*корабля*).
body ['bɔ:dɪ] 0 *n* 1. тело, корпус; 2. главная, основная часть, основная масса (*чего-л.*); большое число (*чего-л.*); 3. организация.
bombardment [bə'mbə:dment] *n* бомбардировка.
boost [bu:st] 4,13 *v* ускорять; разгонять.
booster ['bū:stə] 4,13 *n* стартовый двигатель, ускоритель, бустер.
both [bəʊθ] 0 *prp* оба, обе; *cj* both... and как... так и.
bottle ['bɔ:tɪ] 0 *n* бутыль; баллон; колба.
bottom ['bɔ:təm] *n* дно, днище; нижняя часть.
bound [baʊnd] 6,18 *a* обязательный, непременный; **be bound** обязательно, непременно (*сделать что-л.*).
box [bɔks] 0 *n* коробка, ящик; кожух.
branch [brɑ:ntʃ] 0 *n* 1. отрасль, 2 ветвь.
break ['breɪk] (*broke, broken*) 0 *v* ломать (ся), разрушать (ся), расколовть (ся); **break down** разрушать (ся), выходит из строя.
breathe [brɪ:θ] *v* 1. дышать; 2. жить, существовать; *an air-breathing engine* воздушно-реактивный двигатель.
brief [bri:f] 6,14 *a* краткий; *in brief* коротко говоря, в немногих словах.
briefly ['bri:fli] 6,14 *adv* кратко; вкратце; говоря короче.
bright [braɪt] 2,14 *a* яркий, светлый.
brightness ['braɪntɪs] 2,14 *n* яркость.
bring [brɪŋ] (*brought*) 0 *v* приносить; **bring about** вызывать, влечь за собой; **bring forward** выдвигать; **bring into action** 6,25 приводить в действие; **bring into use** начинать применять; **bring to** доводить до.
broad [brɔ:d] 0 *a* 1. широкий; 2. обширный.
broadcast ['brɔ:dka:sɪt] *v* передавать по радио, вести радиопередачу.
broadcasting ['brɔ:dka:sɪŋ] *n* радиопередача, радиовещание, трансляция.
build [bɪld] (*built*) 0 *v* строить, сооружать; создавать.
bulk [bʌlk] *n* 1. основная часть, масса; 2. объем.
bulky ['bʌlkɪ] *a* громоздкий.
bullet ['bulɪt] *n* пуля.
burn [bə:n] (*burnt*) 0 *v* 1. жечь; 2. гореть.
burning ['bə:nɪŋ] 0 *n* горение.
but [bʌt] 5,14 *prp* кроме, за исключением; *adv* только, лишь; *cj* но, а, однако, тем не менее; **but for** 5,14 если бы не; **cannot but** не может не.
by [baɪ] 0 *prp* 1. у, возле, около; 2. посредством, путем (*чего-л.*); 3. выражает отношения, передаваемые творительным падежом (*кем, чем?*); 4. к (*какому-то времени*); 5. на (*какое-то количество*); **by means of** посредством; **by no means** 8,8 никоим образом; **by now** 2,4 к настоящему времени, сейчас; **by then** к тому времени; **by virtue** 7,20 в силу.

C

calculate ['kælkjuleɪt] 0 *v* вычислять; подсчитывать; рассчитывать.
call [kɔ:l] 0 *v* называть; **call for** требовать.
can [kæn] (*could*) 0 *v* 1. мочь, быть в состоянии, иметь возможность (*сделать что-л.*).
cannon ['kænən] 3,18 пушка, орудие.
capability [,keɪpə'bilitɪ] 3,11 *n* способность; *pl* возможности.
capable ['keɪpəbl] 3,11 *a* способный, одаренный.
capacity [kə'pæsɪtɪ] 0 *n* 1. способность, 2. мощность, производительность; 3. объем, емкость.
capture ['kæptɪfə] 11,10 *n* захват; улавливание; *v* захватывать, улавливать.
care [keɪə] 0 *n* 1. забота, уход; 2. внимание; **care is taken** заботятся, следят за тем, чтобы; **take care of (smth)** заботиться (о чем-либо); следить; принимать меры.
careful ['keɪfʊl] 0 *a* 1. тщательный, 2. осторожный.
carry ['kæri] 0 *v* 1. нести; поддерживать; 2 проводить; **carry on** продолжать; **carry out** выполнять.
case [keɪs] 0 *n* 1. случай, обстоятельство; 2 коробка, ящик; **as is the case** 7,28 как это имеет место (происходит); **this (such) is the case** это имеет место, это происходит; **this is not the case** это не имеет места, это не происходит, это не так.
cause [ko:z] 0 *n* 1. причина; 2. дело, *v* 1. вызывать, причинять; 2. заставлять.
cell [sel] 0 *n* 1. ячейка; 2. элемент.

centigrade ['sentigreɪd] *a* стоградусный.
 century ['sentjʊrɪ] *0 n* столетие, век.
 certain ['sə:tɪn] *0 a* 1. некоторый, 2. определенный; 3. уверенный; *make certain* 6,8/c удостоверяться; *It is (quite) certain* 11,3 несомненно.
 certainly ['sə:tntli] *0 adv* конечно, несомненно.
 chamber ['tʃeɪmbr] 4,3 *n* камера.
 chance [tʃa:ns] *0 n* случай; возможность; *there is a (reasonable) chance that* 11,8/c возможно (есть все основания полагать), что
 change [tʃeɪndʒ] *0 n* 1. перемена, изменение; 2. превращение; *v* 1. изменять(ся); 2. превращать(ся).
 channel ['tʃænl] 2,16 *n* канал.
 character ['kærɪktə] *n* характер.
 charge [tʃa:dʒ] *0 n* заряд; *v* заряжать.
 cheap [tʃi:p] *a* дешевый.
 check [tʃek] *0 n* контроль, проверка; *v* проверять, контролировать.
 chief [tʃi:f] *0 a* главный, основной.
 chiefly ['tʃi:flɪ] *0 adv* главным образом.
 choice [tʃɔ:s] 9,29 *n* выбор.
 choose [tʃu:z] (*chose, chosen*) 9,29 *v*
 1. выбирать; 2. предпочитать.
 circle ['sə:kɪl] *0 n* окружность, круг.
 circuit ['sə:kɪt] *0 n* цепь, контур.
 circulate ['sə:kjuleɪt] *0 v* циркулировать.
 circumstance ['sə:kəmstəns] 9,26 *n* обстоятельство, случай, условие.
 claim [kleɪm] *v* 1. требовать; 2. предендовать.
 classify ['kla:sɪfɪsɪfai] *0 v* классифицировать.
 clean [kli:n] *a* чистый.
 clear [klɪə] *a* ясный; понятный.
 clearly ['klɪəli] *0 adv* 1. ясно; 2. несомненно.
 climb [klaɪm] *0 v* набирать высоту, подниматься; *n* набор высоты.
 clockwise ['kɪskwaɪz] *adv* по часовой стрелке.
 close [klaʊz] *0 v* 1. закрывать(ся); 2. заканчивать(ся); *n* [klaʊz] 1. конец, окончание; 2. закрытие; *a* 1. близкий; плотный; 2. тщательный; подробный; 3. замкнутый.
 closely ['klaʊslɪ] *0 adv* 1. близко; плотно; 2. внимательно; тщательно; подробно.
 cloud [klaʊd] 5,19 *n* облако, туча.
 coal [koul] *0 n* уголь.
 code [koud] *n* код; шифр.
 cold [kould] *0 n* холод; *a* холодный.

collect [kə'lekt] *0 v* собирать.
 collide [kə'laid] 10,2 *v* сталкиваться (с чем-л.).
 collision [kə'lizn] 10,2 *n* столкновение.
 colour ['kʌlə] *0 n* цвет, окраска.
 combination [,kɔm'bɪ'neɪʃn] *0 n* соединение, сочетание.
 combine [kəm'bain] *0 v* сочетать, соединять.
 combined [kəm'baind] *0 a* 1. объединенный; общий; 2. комбинированный, смешанный; *combined with (smth)* 8,8/c наряду, вместе с (чем-л.).
 combustible [kəm'bʌstəbl] *0 n* горючее (вещество), топливо.
 combustion [kəm'bʌstʃn] *0 n* горение; сгорание.
 come [kʌm] (*came, come*) 2,6 *v* 1. приходить, прибывать, идти; 2. начинать, стать, становиться (*перед инфинитивом*); *come into action* 6,27 вступать в действие; *come into being* возникать; *come into play* вступать в действие; *come into use* начинать применяться.
 commercial [kə'mə:ʃl] *a* 1. коммерческий; 2. гражданский.
 common [kə'mən] *0 a* 1. обычный, распространенный; свойственный; 2. общий; *In common* общий для всех.
 commonly ['kəmənpli] *0 adv* обычно, обыкновенно.
 communicate [kə'mju:nɪkeɪt] *0 v* поддерживать связь; передавать сообщения.
 communication [kə'mju:nɪkeɪʃn] *0 n* сообщение, связь.
 comparable ['kəmپrəgəbl] *0 a* сравнимый.
 comparatively [kəm'pærətɪvlɪ] *0 adv* сравнительно, относительно.
 compare [kəm'peə] *0 v* сравнивать; *as compared with (to) (smth)* 8,29 по сравнению с (чем-л.).
 comparison [kəm'peərəns] *0 n* сравнение, сопоставление.
 compete [kəm'pi:t] 4,10 *v* соревноваться, состязаться, конкурировать.
 competition [,kəmپ'rɪ'tɪʃn] 4,10 *n* конкуренция, соревнование.
 competitive [kəm'petɪtɪv] 4,10 *a* конкурирующий.
 complement ['kəmplɪ'mənt] 1,32 *v* дополнять.
 complementary [,kəmplɪ'mentəri] 1,32 *a* дополнительный, взаимодополняющий, добавочный.
 complete [kəm'pli:t] *0 a* полный, за-

конченный; *v* заканчивать, завершать.

completely [kəm'pli:tlɪ] 0 *adv* совершенно, полностью.

complex ['kɒmplɛks] 0 *a* сложный, составной.

complicated ['kɒmplɪkɪteɪtɪd] 0 *a* сложный.

component [kəm'poʊnənt] 0 *n* составная часть, деталь.

compose [kəm'pouz] 2,22 *v* составлять.

composition [,kəm'pozɪ'sɪpɪn] 2,22 *n* строение; состав.

compound ['kɒmpaʊnd] 0 *n* соединение.

compress [kəm'pres] 0 *v* сжимать.

compressibility [kəm'presɪ'bɪlɪtɪ] *n* сжимаемость.

compressible [kəm'presɪbəl] *a* сжимающийся.

comprise [kəm'praɪz] 7,24 *v* состоять из, включать, охватывать.

computation [,kəm'pju:tɪʃn] 0 *n* вычисление, расчет.

compute [kəm'pjū:t] 0 *v* вычислять.

computer [kəm'pjū:tə] 0 *n* сущно-решающее устройство, вычислитель.

concept ['kɒnsept] *n* понятие, идея.

conception [kən'septɪʃn] *n* понятие, концепция.

concern [kən'se:n] 0 *n* 1. интерес, дело; 2. значение, важность; 3. цель, задача; *v* 1. касаться (чего-л.), иметь дело (с чем-л.), рассматривать; 2. заботиться, беспокоиться (о чем-л.); *as far as smth is concerned* 7,30 что касается чего-либо, то; *be of (great) concern* иметь (большое) значение.

concerned [kən'sə:nd] *a* 1. рассматриваемый; 2. заинтересованный; 3. имеющий отношение (к чему-л.), связанный (с чем-л.).

concerning [kən'sə:nɪŋ] 0 *prep* относительно, в отношении.

conclude [kən'klju:d] 5,23 *v* заключать, делать вывод.

conclusion [kən'klju:ʒn] 5,23 *n* заключение, вывод; *draw a conclusion* 5,29 делать вывод.

conclusive [kən'klju:sɪv] 5,23 *a* 1. заключительный; 2. убедительный.

conclusively [kən'klju:sɪvlɪ] 5,23 *adv* убедительно, окончательно.

condition [kən'dɪʃn] 0 *n* 1. условие; 2. состояние; 3. обстоятельство.

conduct [kən'dʌkt] 0 *v* 1. вести; 2. проводить (ток).

conduction [kən'dʌkʃn] 0 *n* 1. проводимость; 2. теплопроводимость.

conductor [kən'dʌktə] 0 *n* проводник, проводящее вещество.

confirm [kən'fɪ:m] 10,27 *v* подтверждать.

conform [kən'fɔ:m] 2,13 *v* соглашаться (ся); соответствовать.

conjunction [kən'dʒʌŋkʃn] 0 *n* соединение, связь; *in conjunction with* наряду с (чем-л.).

connect [kə'nekʃn] 0 *v* соединять, связывать (ся).

connection [kə'nekʃn] 0 *n* соединение, связь.

consequence ['kənsɪkwəns] 0 *n* 1. следствие, результат; 2. значение, важность; *as a consequence* 9,6 следовательно, вследствие этого, *be of (some) consequence* 6,0/с иметь (некоторое) значение; *in consequence* 9,6 следовательно, вследствие этого; *in consequence of (smth)* вследствие, в результате (чего-л.).

consequently ['kənsɪkwəntlɪ] 9,6 *adv* следовательно, вследствие этого.

consider [kən'sɪdə] 0 *v* 1. считать, полагать; 2. рассматривать, учитывать.

considerable [kən'sɪdərəbəl] 0 *a* значительный.

consideration [kən'sɪdə'reɪʃn] 0 *n* 1. рассмотрение; 2. соображение; *be under consideration* 2,5 рассматриваться, находиться в стадии рассмотрения; *give consideration* 6,0/с рассматривать, учитывать; *consideration is given* 6,0/с рассматривается (что-л.), учитывается (что-л.); *take into consideration* принимать в расчет, учитывать; *under consideration* рассматриваемый, который рассматривается.

consistent [kən'sɪstənt] 12,6 *a* 1. последовательный, логичный, стройный; 2. согласующийся, не противоречащий.

consist (of) [kən'sɪst] 0 *v* состоять (из).

constant ['kɒnstənt] 0 *a* постоянный.

constitute ['kɒnſtɪtju:t] 0 *v* представлять, составлять.

constitution [kənſtɪ'tju:ʃn] 0 *n* 1. строение; 2. состав.

construct [kən'strʌkt] 0 *v* 1. строить; 2. конструировать; 3. создавать.

construction [kən'strʌkʃn] 0 *n* 1. строительство; 2. конструкция; *be under construction* 2,5 строиться, находиться в стадии строительства.

consume [kən'sju:m] 0 *v* потреблять; расходовать.

consumption [kən'sʌmprʃn] 0 *п потребление; расход.*
contain [kən'tein] 0 *у содержать в себе, вмешать.*
contemporary [kən'tempərətɪ] *a* 12,1 *современный, в современник.*
continual [kən'tinjuəl] 1,27 *a* *непрерывный.*
continue [kən'tinju:] 0 *у продолжать (ся).*
continuous [kən'tinjuəs] 1,27 *a* *непрерывный, сплошной, постоянный.*
contrary ['kɒntrərɪ] 0 *a* *противоположный; contrary to (smith) 8,14 в противоположность (чemu-л.); on the contrary 8,23 наоборот, напротив, в противоположность этому, с другой стороны.*
contrast ['kɒntræst] *n* *противоположность; in (by) contrast 9,13 и наоборот, напротив, в противоположность этому, с другой стороны; in (by) contrast to (smith) 8,14 в отличие от (чего-л.), в противоположность (чemu-л.).*
contribute [kən'tribju:t] 0 *у делать вклад (в науку); содействовать, способствовать; увеличивать.*
contribution [kəntrɪ'bju:ʃn] 0 *n* *вклад, участие; важная роль.*
control [kən'troul] 0 *n* 1. управление; 2. контроль; 3. регулировка; 4. рычаги управления; *u* управляемый; контролировать; регулировать.
convenient [kən'vei:njənt] *a* *удобный.*
conventional [kən'venʃənl] *a* *обычный; стандартный.*
conversely [kən've:zəlɪ] 9,13 *и наоборот, напротив, в противоположность этому, с другой стороны.*
convert [kən've:t] 0 *u* *превращать; преобразовывать.*
convey [kən'vei] 2,29 *u* 1. передавать; 2. сообщать.
cool [ku:l] 0 *u* *охлаждать(ся); a* *охлажденный; прохладный.*
coolant ['ku:lənt] *n* *охлаждающая жидкость (среда).*
core [kɔ:] 9,21 *n* *сердцевина, внутренняя часть, ядро.*
corner ['kɔ:nə] 0 *n* *угол.*
corpuscle ['kɔ:psl] *n* *корпуксула, частица.*
correct [kə'rekt] *u* *исправлять; a* *правильный.*
correlate ['kɔrɪleɪt] *u* 11,6 *соотносить, сопоставлять.*
correlation [kɔrɪ'læʃn] 11,6 *n* *соотношение, связь, корреляция.*

correspond [,kɔrɪs'pɔnd] 1,19 *u* *соответствовать, согласовывать(ся).*
correspondence [,kɔrɪs'pɔndəns] 1,19 *n* *соответствие, соотношение, связь.*
corresponding [,kɔrɪs'pɔndɪŋ] 1,19 *a* *соответствующий, соответствующий.*
correspondingly [,kɔrɪs'pɔndɪŋli] 1,19 *adv* *соответствующимо.*
cost [kɔst] 4,8 *n* *цена, стоимость.*
count [kaʊnt] 0 *u* *считать, подсчитывать.*
counter ['kaʊntə] 0 *n* *счетчик.*
counter- ['kaʊntə] *pref* *против-, контр-, например: counteract *u* противодействовать.*
country ['kʌntrɪ] 0 *n* *страна; in this country* *в нашей стране (в той стране, где была написана данная работа).*
couple ['kʌpl] 11,20 *n* *пара; u* *соединять, связывать.*
course [kɔ:s] 0 *n* 1. курс, направление; 2. ход, течение; *of course* конечно.
cover ['kʌvər] 0 *n* *покрытие; u* 1. покрывать; 2. охватывать.
covering ['kʌvərɪŋ] 0 *n* *покрытие, оболочка, обшивка.*
craft [kra:fɪ] 0 *n* *летательный аппарат; самолет(ы); судно.*
create [kri:'eɪt] 0 *u* *создавать.*
creative [kri:'eɪtɪv] *a* *творческий.*
crew [kru:] 0 *n* *экипаж (самолета), команда.*
cross-section ['k्रɔ:s'sekʃn] 0 *n* *поперечное сечение.*
curiously ['kjuərɪəsli] *adv* *странны, необычно; curiously enough 10,17 как и странно.*
current ['kʌlərənt] 0 *n* 1. течение; 2. ток; 4,29 *a* *современный; текущий; существующий.*
currently ['kʌlərəntli] 4,29 *adv* *в настоящие времена, в данное время, сейчас.*
curvature ['kə:vərʃə] 0 *n* *кривизна, изгиб.*
curve [kə:v] 0 *n* *кривая, график.*
cut [kʌt] (*cut*) 0 *u* *резать.*

D

daily ['deilɪ] 0 *adv* *ежедневно.*
danger ['deindʒə] 0 *n* *опасность.*
dark [dɑ:k] *a* *темный.*
data ['deɪtə] 0 *n* (*pl* от *datum*) *данные, информация.*
date [deɪt] 0 *n* *дата, число; u* 1. относиться (к определенному числу); датировать, *out of date* 8,0/с установленный; *to date* 8,0/с на сегодняшний день, до настоящего времени,

до сих пор; *up to date* 8,6/с современный, новейший.

datum [dætəm] 0 *n* данная величина.

day [deɪ] 0 *n* день.

deal [di:l] (*dealt*) 0 *v* иметь дело (с чем-л.); рассматривать, касаться; *a great deal* много; *dealt with p.r.* рассматриваемый; с которым имеют дело.

decade [dɪ'keɪd] *n* десятилетие.

decay [dɪ'keɪ] 9,20 *v* 1. распад, разложение; 2. спад, затухание; *v* разрушаться, распадаться.

decide [dɪ'saɪd] 0 *v* решать.

decided [dɪ'saɪdɪd] 6,10 *a* определенный, явный.

decision [dɪ'sɪʒn] 0 *n* решение.

declare [dɪ'kleə] 0 *v* заявлять.

decrease [dɪ'kri:s] 0 *n* уменьшение, понижение; [dɪ'kri:s] *v* уменьшать(ся), понижать(ся).

deep [dɪ:p] 0 *a* глубокий.

defect [dɪ'fekt] 8,26 *n* недостаток, дефект.

defence [dɪ'fens] 0 *n* оборона, защита; *pl* укрепления.

defend [dɪ'fend] 0 *v* защищать(ся).

define [dɪ'fain] 0 *v* определять.

definite ['defɪnit] 0 *a* определенный.

deflect [dɪ'flekt] *v* отклонять(ся).

degree [dɪ'gri:] 0 *n* 1. градус, 2. степень; *to a certain degree* до некоторой степени.

delay [dɪ'leɪ] *n* задержка.

deliver [dɪ'lɪvə] *v* доставлять.

demand [dɪ'ma:nd] 0 *n* требование; *v* требовать.

dense [dens] 0 *a* густой; плотный.

density [dɛnsiti] 0 *n* плотность.

depend [dɪ'pend] 0 *v* 1. зависеть (от чего-л.); 2. полагаться (на что-л.).

dependence [dɪ'pendəns] 0 *n* зависимость.

dependent [dɪ'pendənt] 0 *a* зависимый.

depending [dɪ'pendɪŋ] *prp* в зависимости от (чего-л.).

depth [depθ] 0 *n* глубина.

derive [dɪ'ræɪv] 0 *v* 1. извлекать, получать; 2. выводить (формулу).

descend [dɪ'send] 0 *v* спускаться, снижаться.

descent [dɪ'sent] 0 *n* спуск, снижение.

describe [dɪ'skraɪb] 0 *v* описывать.

description [dɪ'skrɪpʃn] *n* описание.

design [dɪ'zain] 0 *n* проект, конструкция; *v* 1. конструировать, проектировать; 2. предназначать.

designer [dɪ'zainə] 0 *n* конструктор.

desirable [dɪ'zaɪərəbl] 0 *a* желательный.

desire [dɪ'zaɪə] *n* желание; 0 *v* желать, хотеть.

despite [dɪs'paɪt] *prp* несмотря на.

destination [dɛstɪ'neɪʃn] 0 *n* назначение, место назначения.

destroy [dɪs'troy] 3,9 *v* разрушать.

destruction [dɪs'trukʃn] 3,9 *n* разрушение, уничтожение.

destructive [dɪs'truktɪv] 3,9 *a* разрушательный.

detail [dɪ'teɪl] *n* подробность, деталь.

detect [dɪ'tekt] 0 *v* обнаруживать, прослеживать.

determine [dɪ'ta:min] 0 *v* определять, устанавливать.

develop [dɪ'veləp] 0 *v* 1. развивать, разрабатывать, совершенствовать; 2. создавать.

development [dɪ'veləpmənt] 0 *n* 1. развитие; 2. создание, разработка; 3. достижение, прогресс; 4. конструирование, проектирование; *be under development* 2,5 разрабатываться, находиться в стадии разработки; *under development* разрабатываемый, который разрабатывается.

deviate ['dɪ:vieɪt] *v* отклоняться.

device [dɪ'veɪs] 0 *n* аппарат, устройство.

devise [dɪ'veɪz] 7,13 *v* изобретать, разрабатывать.

differ ['dɪ:fə] 0 *v* различать(ся), отличать(ся).

difference ['dɪfrəns] 0 *n* 1. отличие, различие; 2. разность.

different ['dɪfrənt] 0 *a* 1. другой, отличный; 2. различный, разный.

differently ['dɪfrəntli] 0 *adv* иначе, по-другому.

difficult ['dɪfɪkəlt] 0 *a* трудный.

digital ['dɪdʒɪtl] *a* цифровой.

dimension [dɪ'menʃn] *n* измерение; *pl* размеры.

diminish [dɪ'minɪʃ] 10,22 *v* уменьшать(ся).

direct [dɪ'rekt] 0 *v* направлять. ['daɪrekt] a 1. прямой; непосредственный; 2. постоянный (ток).

dis- [dɪs] придает слову значение отрицания или противопоставления, например: *disorganize* дезорганизовывать.

disadvantage [dɪsəd'va:n'tɪdʒ] 0 *n* недостаток.

disappear [dɪsə'pɪr] 0 *v* исчезать.

discharge [dɪs'tʃa:dʒ] 0 *n* разряд; *v* разряжать(ся).

disclose [dɪs'klaʊz] 0 *v* раскрывать, обнаруживать.

discontinuity [/'dis,kɔntinju:iti] 1,27 *n* прерывность, перерыв, разрыв; неравномерность.

discontinuous [/'diskən'tinjuəs] 1,27 *a* прерывный; несплошной; непостоянный.

discover [dis'kʌvər] 0 *v* открывать, обнаруживать.

discovery [dis'kʌvəri] 0 *n* открытие.

discrete [dis'kri:t] 2,23 *a* отдельный, дискретный.

discuss [dis'kʌs] 0 *v* обсуждать.

displace [dis'pleis] 8,12 *v* смешать, перемещать.

disposal [dis'pouz] 3,10 *n* 1. распоряжение, возможность распорядиться (чего-л.); 2. удаление, устранение, отвод (чего-л.).

dispose [dis'pouz] 3,10 *v* 1. располагать, размещать; 2. dispose of (smth) избавиться от (чего-л.), устраниТЬ, ликвидировать (что-л.).

dissolve [di'zolv] 8,20 *v* растворяться.

distance [/'distəns] 0 *n* расстояние.

distant [/'distənt] 6,28 *a* далекий, отдаленный.

distinct [dis'tɪŋkt] 0 *a* 1. отличный; отдельный; 2. отчетливый, определенный; as distinct from (smth) 8,14 в отличие от (чего-л.).

distribute [dis'tribju:t] 1,23 *v* распределять.

disturb [dis'tə:b] 11,16 *v* нарушать (что-л.), возмущать, создавать помехи.

disturbance [dis'tə:bəns] 11,16 *n* возмущение; помехи.

divide [dr'veid] 0 *v* делить, подразделять.

division [di'veizn] 0 *n* 1. деление; 2. часть, раздел.

do [du:] (did, done) 0 *v* 1. делать, выполнять; 2. (вместе с отрицанием not образует отрицательную форму глагола); 3. (глагол-заместитель другого глагола — не переводится или переводится тем глаголом, который заменяет); 4. действительно, все же (для выделения глагола-сказуемого).

domain [də'meɪn] 1,33 *n* область, сфера.

dominant [/'dəmənənt] 12,16 *a* господствующий, преобладающий.

dominate [də'mi:nēt] 12,16 *v* преобладать, господствовать; доминировать.

door [dɔ:] 0 *n* дверь, дверца, люк.

double [/'dʌbl] 5,26 *v* удваивать; *a* двойной.

doubt [daʊt] 1,34 *n* сомнение; *v* сомневаться; beyond doubt вне сомнения; no doubt несомненно; without doubt без сомнения; It is beyond doubt that 11,3 несомненно, что; there is no doubt that 11,3 нет никакого сомнения в том, что.

doubtful [/'daʊtfʊl] 1,34 *a* сомнительный.

down [daʊn] 0 *adv* вниз; внизу; *down to* 7,11 *prep* до, вплоть до.

drag [dræg] *n* лобовое сопротивление

draw [drɔ:] (drew, drawn) 5,29 *v* 1. тянуть, тянуть; 2. чертить, рисовать; составлять (план); 3. выводить (заключение); draw conclusions 5,29 делать выводы.

drawback [drɔ:bæk] 5,29 *n* недостаток, задержка, погрешность.

drive [draɪv] 0 *n* привод, передача, *v* (drove, driven) приводить в действие, в движение.

drop [drɔ:p] 0 *n* 1. падение; 2. капля; *v* 1. падать; снижаться; 2. сбрасывать, бросать.

dual [/'du:əl] 1,31 *a* 1. двойственный. 2. двойной (состоящий из двух частей).

due [du:] 3,26 *a* 1. должный, надлежащий, правильный; 2. обусловленный; due to *prep* благодаря, вследствие.

durability [dju:aɪər'bɪlɪti] 6,24 *n* прочность, выносливость.

durable [dju:aɪərəbl] 6,24 *a* прочный.

duration [dju:aɪ'reiʃn] 6,24 *n* продолжительность, длительность.

during [/'du:ərɪŋ] *prep* в течение, во время.

duty [/'du:ti] 0 *n* обязанность, долг.

E

each [i:tʃ] 0 *pron* каждый; each other 8,0/с друг друга; each time *ci* каждый раз, когда.

early [ə:li] 0 *a* 1. ранний; 2. первый; *adv* рано; as early as 3,17 уже, еще.

earth [ə:θ] 0 *n* земля, земной шар.

ease [i:z] 9,25 *n* легкость; *v* облегчать

easily [i:zli] 9,25 *adv* легко, свободно.

easy [i:zi] 0 *a* легкий.

edge [edʒ] 0 *n* край, кромка, ребро.

effect [ɪ'fekt] 10,7 *n* действие, воздействие; *v* осуществлять; In effect по существу.

efficiency [ɪ'fɪʃənsi] 0 *n* 1. эффективив-

ность; 2. производительность; 3. коэффициент полезного действия.
effort [ˈefət] 0 *n* усилие, попытка.
e. g. [i:ˈdʒi:] (*exempli gratia*) например.
either [ˈaɪðə] 0 *pron* любой, каждый (из двух); **either ... or** или ... или.
eject [iˈdʒekt] 0 *v* выбрасывать; выпускать.
eliminate [iˈlɪmɪneɪt] 10,20 *v* устранять, исключать.
emerge [iˈmɜ:dʒ] 8,9 *v* появляться, возникать.
emergency [iˈmɛdʒənsi] 8,9 *n* 1. чрезвычайное положение, особая обстановка, необходимость; 2. авария, выход из строя.
emission [iˈmɪʃn] 6,13 *n* излучение, эмиссия.
emissive [iˈmɪsɪv] 6,13 *a* излучающий.
emit [iˈmɪt] 6,13 *v* испускать, излучать.
emphasis [emfəˈfæsɪs] 6,6/c *n* ударение, подчеркивание; особое внимание; **place emphasis** подчеркивать, придавать особое значение; **emphasis is placed** подчеркивается, уделяется особое внимание.
emphasize [emfəˈfæsaɪz] *v* подчеркивать, придавать особое значение.
employ [iˈmprɔɪ] 0 *v* применять, использовать.
enable [iˈneɪbl] 0 *v* давать возможность, позволять.
enclose [inˈklouz] 10,21 *v* включать, помешать.
enclosure [inˈkluːzə] 10,21 *n* вложение.
encounter [inˈkaʊntə] 10,4 *v* встречаться(ся), сталкиваться(ся).
end [end] 0 *n* 1. конец; 2. цель; **In the end** 9,6/c и наконец.
endeavo(u)r [inˈdevə] 12,18 *n* 1. попытка, стремление, усилие; 2. область (науки, исследования, деятельности).
endurance [inˈdjuərəns] 9,5 *n* 1. продолжительность (полета); 2. выносливость, прочность.
endure [inˈdjuə] 9,5 *v* 1. выдерживать, терпеть; 2. длиться.
enemy [ˈenimɪ] 0 *n* неприятель, противник.
engine [ˈendʒɪn] 0 *n* машина, двигатель.
engineering [endʒɪnˈɪərɪŋ] 0 *n* техника.
enormous [iˈnɔ:mas] 0 *a* огромный.
enormously [iˈnɔ:masli] 0 *adv* значительно, в большей степени, очень.
enough [iˈplɪ] 0 *a* достаточный; *adv* достаточно; **strange enough** 11,6/c странно, что.
ensure [iˈnʃeə] 9,3 *v* обеспечивать, гарантировать.
enter [ˈentə] 4,21 *v* входить; проникать.
entire [iŋˈtaɪə] 0 *a* полный, целый, весь.
entrance [iŋˈtræns] 4,21 *n* вход.
entry [iŋtri] 4,21 *n* вход; проникновение.
environment [iŋˈvaɪərənmənt] *n* окружение, среда, окружающие условия.
enviseage [iŋˈvɪzɪdʒ] *v* предусматривать, предвидеть.
equal [i:kwəl] 0 *v* равняться; *a* равный, одинаковый.
equation [iŋˈkeɪʃn] *n* уравнение.
equilibrium [i:kwɪlɪbriəm] 11,26 *n* равновесие.
equip [i:kwɪp] 0 *v* оборудовать, оснащать.
error [ˈerə] 0 *n* ошибка.
error-free [ˈerərˈfri:] 7,31 *a* безошибочный, правильный.
escape [i:keɪp] 12,10 *n* 1. выход, отрыв; 2. выход (решение вопроса); 0 *v* 1. вырываться, выходить, отрываться; 2. избегать, ускользать.
essential [i:senʃl] 0 *a* существенный, основной; важный.
essentially [i:senʃli] 0 *adv* по существу, в основном.
essentials [i:senʃlz] *n pl* основы, основные положения.
establish [i:stæblɪʃ] 0 *v* 1. устанавливать, определять; 2. создавать (что-л.); 11,6/c *it has been established that* установлено (известно), что.
estimate [i:stɪmɪteɪt] 5,30 *n* оценка, определение; *v* оценивать (понять значение или ценность чего-л.), вычислять, определять (приблизительно).
etc. [i:sefə] и так далее.
even [i:vn] 0 *a* ровный, гладкий; *adv* даже.
event [i:vent] 0 *n* 1. событие, случай; 2. явление.
eventual [i'venʃjuəl] 10,8 *a* 1. возможный; 2. конечный.
eventually [i'venʃjuəli] 10,8 *adv* в конце концов, в конечном счете.
ever [eˈvə] 0 *adv* 1. когда-либо; 2. все (например: *ever increasing* все увеличивающийся); *ever since* с тех пор.

every ['evri] 0 *prn* каждый; **every time** каждый раз.
everyone (everybody) ['evri:ba:dɪ] 0 *prn* каждый, всякий (человек, все (люди)).
everywhere ['evri:weə] 0 *adv* повсеместно.
evidence ['evidəns] 1,35 *n* 1. доказательство; 2. данные.
evident ['evidənt] 1,35 *a* очевидный.
exact [ɪg'zækt] 0 *a* точный; **to be more exact** точнее, более точно.
example [ɪg'za:mpl] 0 *n* пример; **for example** например.
exceed [ɪk'si:d] 1,10 *v* превышать, преисходить.
exceedingly [ɪk'si:dɪŋglɪ] 1,10 *adv* чрезвычайно, в высшей степени.
except [ɪk'sept] 0 *prp* исключая; кроме; **except for** 8,0/с за исключением (чего-л.).
excess [ɪk'ses] 1,10 *n* избыток, излишек; **in excess of** свыше; **be in excess of (smth)** превышать (что-л.).
excessive [ɪk'sesɪv] 1,10 *a* избыточный.
excite [ɪk'sait] *v* возбуждать (ся).
exclude [ɪks'klu:d] 0 *v* исключать.
exert [ɪg'zə:t] 0 *v* 1. создавать (силу); 2. оказывать (влияние).
exhaust [ɪg'zɔ:st] *v* выхлоп; *v* разряжать, выкачивать (воздух); **exhaust gases** выхлопные газы.
exhibit [ɪg'zibɪt] 5,13 *v* 1. проявлять (свойство); 2. выставлять, экспонировать.
exhibition [,eksi'bɪʃn] 5,13 *n* выставка.
exist [ɪg'zist] 0 *v* существовать.
existence [ɪg'zɪstəns] 0 *n* существование; наличие; **be in existence** 2,5 существовать; **In existence** существующий, который существует.
expand [ɪks'pænd] 3,15 *v* расширяться, увеличивать (ся) в объеме.
expansion [ɪks'pænʃn] 3,15 *n* расширение, распространение.
expect [ɪks'pekt] 4,38 *v* 1. ожидать, надеяться; 2. предполагать.
expectation [,ekspæk'teʃn] 4,38 *n* 1. ожидание; 2. вероятность.
expend [ɪks'pend] 9,31 *v* тратить, расходовать.
expenditure [ɪks'penditʃə] 9,31 *n* траты, затраты, расход.
expense [ɪks'pens] 8,0/с *n* траты, расход; счет; **at the expense of (smth)** 8,0/с за счет (чего-л.).
expensive [ɪks'pensɪv] 9,31 *a* дорогой, дорогостоящий.
experience [ɪks'pɪəriəns] 7,12 *n* накопленный опыт, практика; *v* испытывать, ощущать.
experienced [ɪks'pɪəriənst] 7,12 *a* опытный, знающий, квалифицированный.
explain [ɪks'plæin] 0 *v* объяснять.
explainable [ɪks'plæinəbl] 0 *a* объяснимый.
explode [ɪks'plaud] 0 *v* взрывать (ся).
explore [ɪks'plo:z] 2,31 *v* исследовать, изучать.
explosive [ɪks'pləuzɪv] 0 *a* взрывчатый; *n* взрывчатое вещество.
expose [ɪks'pouz] 0 *v* 1. подвергать действию (чего-л.); 2. выставлять.
express [ɪks'pres] 7,25 *v* выражать.
extend [ɪks'tend] 0 *v* 1. простираясь, тянуться; 2. распространяться (на что-л.).
extended [ɪks'tendɪd] 7,7 *a* длительный, продолжительный.
extensive [ɪks'tensɪv] 7,7 *a* обширный, большой.
extensively [ɪks'tensɪvlɪ] 7,7 *adv* широко, много, подробно.
extent [ɪks'tent] 0 *n* 1. протяженность; 2. степень, мера; **to a certain extent** до некоторой степени.
exterior [ɪks'tɪərɪə] 4,12 *a* внешний, наружный; *n* внешний вид.
external [ɪks'tə:rnl] 4,12 *a* внешний, наружный.
extreme [ɪks'tri:m] 4,7 *n* крайность, предельное положение; *a* крайний, предельный.
extremely [ɪks'tri:mli] 4,7 *adv* чрезвычайно, крайне.
eye [aɪ] 0 *n* глаз.

F

face [feɪs] 0 *n* 1. лицо; 2. поверхность; *v* 1. сталкиваться (с трудностями, проблемами); встречаться; 2. быть обращенным (в определенную сторону).
facilitate [fə'silɪteɪt] 3,29 *v* облегчать.
facilities [fə'silɪtɪz] 3,29 *n pl* средства; оборудование, устройство.
facility [fə'silɪtɪ] 3,29 *n* легкость.
fact [fækt] 0 *n* факт; **as a matter of fact** 5,2 фактически; **in fact** 11,8 фактически, в действительности; **It has long been an accepted fact** 11,0/с давно признано.
factor ['fækɪt] 0 *n* коэффициент.
fail [feɪl] 1,11 *v* не удаваться, потерпеть неудачу, выйти из строя

(о машине); 2. не (перед инфинитивом другого глагола).

failure ['feɪlər] 1,11 *n* 1. неуспех, неудача; 2. повреждение, авария.

fairly ['feɪrlɪ] 5,24 *adv* достаточно, довольно.

fall [fɔ:l] 0 *n* падение; (*fell, fallen*) *v* падать, понижаться.

familiar [fə'miljər] 5,33 *a* хорошо знакомый, известный; *become familiar* ознакомиться (с чем-л.); *be familiar* знать (что-л.), быть знакомым (с чем-л.).

famous ['feɪməs] 0 *a* знаменитый, известный.

far [fɑ:] 0 *a* далекий; *adv* 1. далеко; 2. значительно; *as far as* 0 настолько, поскольку; *as far as ...* *Is concerned* 7,30 что касается.

fast [fa:st] 0 *a* 1. быстрый; 2. крепкий, прочный; *adv* 1. быстро; 2. крепко, прочно.

fasten ['fa:sn] 0 *v* закреплять, прикреплять.

favourable ['feivərəbl] *a* благоприятный, подходящий.

feasible ['fi:zəbl] *a* возможный; осуществимый.

feature ['fi:tʃər] 10,28 *n* свойство, особенность, характерная черта.

feed [fi:d] (*fed*) 7,1 *v* питать, подавать; *n* питание, подача.

feel [fi:l] (*felt*) 7,35 *v* 1. чувствовать, испытывать; 2. полагать, считать; *It is felt that* 7,35 кажется, что; *feel certain (sure) (about smth)* 6,6/с быть уверенным (в чем-л.); *we feel that* 7,35 мы полагаем, что; нам кажется, что.

few [fju:] 0 *a* мало; *a few* несколько.

field [fi:ld] 0 *n* 1. поле; 2. область, сфера.

figure ['figə] 0 *n* 1. цифра; 2. рисунок; чертеж.

fill [fɪl] 0 *v* наполнять.

final ['faɪnl] 4,4 *a* конечный, заключительный.

finally ['faɪnəlɪ] 4,4 *adv* наконец, в конце концов; в заключение.

find [faɪnd] (*found*) 0 *v* 1. находить, обнаруживать; 2. устанавливать, определять.

fine [faɪn] 5,7 *a* 1. отличный, прекрасный; 2. тонкий; 3. мелкий, тонкоизмельченный.

finish ['fɪnɪʃ] 0 *n* окончание, конец; *v* кончать(ся), заканчивать.

finite ['faɪnət] 2,19 *a* ограниченный, конечный, предельный.

fire ['faɪə] 0 *n* огонь; *v* 1. стрелять; 2. зажигать.

first [fɜ:st] 0 *a* первый; 9,2 *adv* прежде всего, во-первых; *at first* 9,2 во-первых; *first of all* 9,2 прежде всего; *for the first time* впервые.

fission ['fɪʃn] 0 *n* расщепление; *v* расщеплять.

fit [fɪt] 6,1 *v* соответствовать; 2. оборудовать, снабжать.

fix [fɪks] *v* укреплять; устанавливать.

flare ['flær] 11,7 *n* вспышка, сияние.

flat [flæt] *a* 1. плоский; 2. пологий, настыйный (о траектории).

flight [flaɪt] 0 *n* полет.

flow [fləʊ] 0 *n* поток, струя; *v* течь, протекать.

fluid [fljuɪd] 0 *n* текучая среда; жидкость; газ.

fly [flaɪ] (*flew, flown*) 0 *v* 1. летать; 2. управлять (самолетом).

follow ['fɒləʊ] 0 *v* 1. следовать (за кем-л., чему-л.); 2. следить; *as follows* 6,27 следующим образом; *followed by* за которым следует; *It follows* 4,25 из этого следует, отсюда следует; *it follows (from smth) that* из (чего-то) следует, что.

following ['fɒləʊɪŋ] 0 *a* следующий; *prep* вслед за, после.

foot [fʊt] (*pl feet*) фут (около 30,5 см).

for [fɔ:] 0 *prep* 1. для; 2. в течение; *cf* так как.

force [fɔ:s] 0 *n* сила; *v* заставлять, вынуждать.

forced [fɔ:st] 0 *a* вынужденный; принудительный.

foreign ['fɔ:rin] 0 *a* иностранный.

form ['fɔ:m] 0 *n* форма, вид; *v* создавать, формировать.

former ['fɔ:tmər] 0 *a* прежний, бывший; *the former* первый (из двух названных выше).

fortunate ['fɔ:tʃnət] 4,18 *a* счастливый, удачный; *it is fortunate that* 4,18 к счастью.

fortunately ['fɔ:tʃnətlɪ] 4,18 *adv* к счастью.

forward ['fɔ:wəd] 0 *a* передний; *adv* вперед.

found [faʊnd] 0 *v* основывать; создавать.

fragment ['frægmənt] 10,6 *n* осколок; обломок.

frame ['freɪm] 0 *n* 1. основа; 2. рама; 3. система (отсчета).

free [fri:] 0 *a* свободный.

frequency ['fri:kwənsɪ] 0 *n* частота.

frequent ['fri:kwənt] 0 *a* частый.

friction [ˈfrɪkʃn] 0 *n* трение.
 from [frɒm] *prep* 1. из, от, с (откуда? от кого?); 2. на основании (чего-л.); from ... to (till) от ... до.
 front [frʌnt] 0 *n* передняя сторона; *a* передний; in front of впереди.
 fuel [fju:l] 0 *n* топливо; горючее; *v* направлять горючим.
 full [fʊl] 0 *a* полный; целый.
 fully ['fʊlɪ] 0 *adv* совершенно, полностью.
 function ['fʌŋkʃn] 0 *n* назначение, функция; *v* действовать, работать.
 fundamental [fʌndə'mentl] 1,36 *a* 1. основной, коренной, существенный; 2. основополагающий, теоретический.
 fundamentally [fʌndə'mentlɪ] 1,36 *adv* в сущности, по существу.
 fundamentals [fʌndə'mentlz] 1,36 *n pl* основы, основные принципы, основные положения.
 furnish ['fɜ:nɪʃ] 0 *v* снабжать; давать, предоставлять.
 further ['fə:ðə] 9,15 *adv* далее; затем.
 furthermore ['fə:ðə'mɔ:] 9,4 кроме того, к тому же.
 fusion ['fju:zən] *n* слияние, синтез.
 future ['fju:tʃə] 0 *a* будущее (время).

G

gain [geɪn] 1,4 *n* 1. приобретение, увеличение; 2. выигрыш; 3. усиление; *v* 1. получать (преимущество, одобрение); приобретать (знания); увеличивать (скорость); 2. выигрывать.
 gap [gæp] 0 *n* 1. промежуток, зазор, разрыв; 2. пробел (в знаниях).
 gaseous ['geɪzəs] *a* газообразный.
 gather ['gæðə] 0 *v* собирать.
 general ['dʒenərəl] 0 *a* 1. общий; 2. обычный; *In general* 11,11 вообще; обычно; вообще говоря, в общем; *In a general sense* 11,11 в широком смысле слова.
 generally ['dʒenərəlɪ] 0 *adv* вообще говоря, в общем; generally speaking 11,11 вообще говоря.
 generate ['dʒenəreɪt] 0 *v* 1. порождать, образовывать (что-л.); 2. генерировать, производить.
 generation [dʒenə'reiʃn] 0 *n* 1. образование, возникновение; 2. поколение.
 get [get] (got) 0 *v* 1. получать; 2. достигать; 3. становиться.
 giant ['daɪənt] *a* гигантский
 give [gɪv] (gave, given) 0 *v* давать;

give an account of (smth) давать сведения; вписывать (что-л.); give consideration рассматривать; give rise 1,9 вызывать, создавать (трудности); являться причиной (чего-л.); выдвигать (проблему).
 given *cj* при условии, что; если; зная; имея.
 glass [gla:s] 0 *n* стекло.
 glide [glaid] 0 *n* планирование; *v* планировать.
 glider ['glaidə] 0 *n* планер.
 glow [glou] 5,12 *n* свечение, накаливание, *v* накаляться докрасна (добра); светиться (как при накаливании).
 go [gou] (went, gone) 0 *v* идти, двигаться, быть в движении; be going (+inf.) собираться (сделать что-л.); go into particulars 6,27 вдаваться в подробности; go into play 6,27 вступать в действие; go into service 6,27 вступать в действие (в строй).
 gold [gould] 0 *n* золото.
 good [gud] 0 *a* хороший.
 grade [greɪd] 0 *n* качество; сорт.
 gradual ['grædʒuel] 0 *a* постепенный.
 gravity ['grævɪtɪ] 0 *n* сила тяжести, тяготение, притяжение.
 great [greɪt] 0 *a* большой; великий; a great deal много.
 greatly ['greɪtlɪ] 0 *adv* очень, весьма, значительно.
 ground [graʊnd] 0 *n* 1. земля, почва; 2. основание.
 grow [grou] (grew, grown) 0 *v* 1. расти; 2. становиться.
 grown-up ['grəʊnp'ap] 2, 3 *a, n* взрослый (человек).
 guidance ['gaɪdəns] 0 *n* 1. руководство; 2. управление, наведение.
 guide [gaɪd] 0 *v* направлять, управлять, вести.

H

half [ha:fɪ] (pl halves) 6,21 *n* половина.
 hand [hænd] 0 *n* 1. рука; 2. стрелка; on the one hand 1,2 с одной стороны; on the other hand с другой стороны.
 handle ['hændl] 0 *v* 1. иметь дело, заниматься (чем-л.); 2. обращаться, управлять, манипулировать (чем-л.).
 haphazard ['hæp'ha:zəd] 12,5 *a* случайный.
 happen ['hæpən] 0 *v* 1. случаться, происходить; 2. оказываться (+инф.).

нитив); **It happens that** 6,23 случается, что.

happily [ˈhæpɪlɪ] 11,0/с к счастью.

hard [ha:d] 0 *a* 1. твердый, крепкий; 2. трудный.

hardly [ˈha:dli] 0 *adv* едва ли, вряд ли.

harm [ha:m] 9,23 *n* вред, ущерб; *v* вредить, причинять вред.

harmful [ˈha:mfl] 9,23 *a* вредный.

harmless [ˈha:mls] 9,23 *a* безвредный.

have [hæv] (**had**) 0 *v* 1. иметь, обладать; 2. должен, вынужден (*перед инфинитивом другого глагола*); 3. (*вспомогательный глагол для образования perfectной формы — не переводится*); 4. заставить сделать так, чтобы (*в составе инфинитивной конструкции*).

head [hed] 0 *n* голова, головная часть; *v* 1. взглядывать; 2. направлять (ся).

hear [hɪə] (**heard**) 0 *v* 1. слышать; 2. узнавать.

heart [ha:t] 0 *n* сердце, сердцевина.

heat [hi:t] 0 *n* 1. теплота; 2. нагрев; *v* нагревать(ся).

heavy [ˈhevɪ] 0 *a* тяжелый.

height [ha:t] 0 *n* высота.

help [hɛlp] 0 *n* помощь; *v* помогать.

hence [hens] 0 отсюда, поэтому.

hide [haɪd] (**hid, hidden**) 12,22 *v* скрывать(ся), прятать(ся).

high [haɪ] 0 *a* 1. высокий; 2. большой, сильный, мощный; *adv* высоко; *as high as* до (*перед цифрами*).

highly [ˈhaɪlɪ] 0 *adv* весьма, очень.

hit [hit] *v* 1. ударять; 2. попадать (в цель).

hold [hould] (**held**) 0 *v* 1. держать, удерживать; 2. считать, полагать; 3. проводить (*конференцию*); **hold true** 6,0/с быть справедливым (верным).

hole [houl] 8,25 *n* дырка, отверстие.

horizon [həˈraɪzn] 6,20 *n* горизонт.

horizontal [hɔrɪˈzəntl] 6,20 *a* горизонтальный.

horsepower [ˈhɔ:s,raʊə] 0 *n* 1. лошадиная сила; 2. мощность в лошадиных силах.

hot [hɔ:t] 0 *a* горячий.

hour [aʊə] 0 *n* час; *per hour* в час.

house [haʊs] 0 *n* дом; *v* вмешать.

how [hau] 0 *adv* как, каким образом; **how many** [hau mʌnɪ] сколько.

however [haʊ'evə] 0 *cj* однако; тем не менее; несмотря на это; *adv* как бы иначе, какой бы иначе.

human [ˈhju:mən] *a* человеческий.

I

ice [aɪs] 0 *n* лед.

idea [aɪ'dɪə] 0 *n* идея; представление.

identification [aɪ'dentɪfɪkɪʃn] 5,28

1. опознавание; 2. отождествление.

identify [aɪ'dentɪfaɪ] 5,28 *v* опознавать; определять; различать, отождествлять.

idle [aɪd] 6,15 *a* незанятый; бездействующий.

I. e. [aɪ'i:] (**Id est**) то есть.

if [ɪf] 0 *cj* 1. если; 2. ли; **as if** 8,0/с как если бы; **if any** (*anything*) если (таковой) имеется, если вообще (имеется).

ignite [ɪg'naɪt] 3,6 *v* загораться, воспламеняться.

il- [ɪl] *pref* со значением отрицания, например: **illegal** *a* незаконный, нелегальный.

im- [ɪm] *pref* со значением отрицания, например: **impossible** *a* невозможный.

image [ˈɪmɪdʒ] 2,8 *n* изображение.

imaginable [ɪ'mædʒɪnəbl] 2,8 *a* вообразимый; такой, который можно себе представить.

imaginary [ɪ'mædʒɪnərɪ] 2,8 *a* воображаемый, мнимый.

imagination [ɪ'mædʒɪ'neɪʃn] *n* воображение, фантазия.

imagine [ɪ'mædʒɪn] 2,8 *v* воображать, представлять себе.

immediate [ɪ'mi:dʒɪt] 10,23 *a* 1. непосредственный, прямой; 2. немедленный, мгновенный.

immediately [ɪ'mi:dʒɪtlɪ] 10,23 *adv* 1. непосредственно; 2. немедленно.

immense [ɪ'mens] 5,5 *a* огромный, громадный.

impact [ɪmpækɪt] 4,36 *n* 1. удар, столкновение; 2. влияние, воздействие.

impart [ɪm'pa:t] 10,5 *v* отдавать (часть чего-л.), передавать, сообщать.

importance [ɪm'pɔ:təns] 0 *n* важность, значение; **be of importance** иметь значение; **be of no importance** не иметь значения.

important [ɪm'pɔ:tənt] 0 *a* важный.

improve [ɪm'pru:v] 0 *v* улучшать(ся), усовершенствовать.

impurity [ɪm'prju:ətɪ] 8,19 *n* примесь.

in [ɪn] 0 *prp* 1. в (*отвечает на вопросы: где и когда*); 2. через (*какой-то отрезок времени*); 3. в *течение (какого-то срока)*.

in- [ɪn] *pref* со значением отрицания,

например: Inability *n* неспособность.
Incendiary [in'sendjəri] 3,4 *n* зажигательное вещество; *a* зажигательный.
inch [intʃ] 6,17 *n* дюйм (мера длины = 2,5 см).
Include [in'klju:d] 0 *v* 1. включать; 2. заключать в себе.
Incorporate [in'kɔ:rəgeit] 12,8 *v* 1. включать, охватывать; 2. встраивать.
Increase ['inkri:s] 0 *n* увеличение, возрастание; *v* [in'kri:S] увеличивать (ся), возрастать.
Increasingly [in'kri:sɪŋgli] *adv* все более.
Indeed [in'di:d] 11,3 действительно, на самом деле.
Indicate ['indikeit] 0 *v* указывать, показывать.
Indication [indi'keiʃn] 0 *n* указание, показание; *there is every indication that* 11,3 все говорит о том (указывает на то), что.
Indicative [in'dɪkətɪv] 0 *a* показательный, характерный.
Infant ['ɪnfənt] 2,2 *a* начальный; *In an infant state* в начальной стадии.
Inferior [in'fɪəriər] 3,25 *a* плохой, низший; *be Inferior* 3,25 уступать (быть хуже).
Influence ['ɪnfljuəns] 0 *n* влияние; *v* влиять, воздействовать.
Inherent [in'hɪərənt] 4,15 *a* присущий, свойственный, неогъемлемый.
Inherently [in'hɪərəntli] 4,15 *adv* по существу, по своей природе.
Initial ['ɪnɪʃl] 11,18 *a* начальный, первоначальный.
Initiate ['ɪnɪʃeɪt] 11,18 *v* положить начало, начинать.
inlet ['ɪnlet] 4,2 *n* 1. впуск; 2. входное устройство.
inner ['ɪnər] *a* внутренний.
innumerable ['ɪn'ju:mərəbl] 12,15 *a* бесчисленный.
Input ['ɪnpʊt] 7,6 *n* вводимое количество, ввод, подвод.
Inside ['ɪn'saɪd] 10,1 *a* внутренний; *prep* внутри.
Install [in'stɔ:l] 0 *v* устанавливать.
Installation [in'stɔ:l'eʃn] 0 *n* установка.
Instance ['ɪnstəns] 2,7 *n* пример; *for Instance* например.
Instant ['ɪnstənt] 2,7 *n* мгновение, момент.
Instantaneous [ɪnstən'teɪnəs] 2,7 *a* мгновенный, немедленный.
Instead [in'sted] 0 *c* вместо этого; *instead of (smth)* *prep* вместо (чего-л.), а не.
Instrument ['ɪnstrumənt] 0 *n* прибор.
insulation [ɪn'sju'lēʃn] 0 *n* изоляция.
integral ['ɪntɪgrəl] 0 *a* 1. целый; 2. неотъемлемый; *n* интеграл.
intense [in'tens] 5,8 *a* интенсивный, сильный, напряженный.
intensify [in'tensifai] 5,8 *v* усиливать.
intensity [in'tensiti] 5,8 *n* интенсивность, напряженность.
Intensive [in'tensiv] 5,8 *a* интенсивный.
inter- ['ɪntə] *pref* соответствует приставкам меж-, между-; взаимо-, взаимно-, например: *interaction* взаимодействие.
interact [ɪn'tɛə'rækt] 0 *v* 11,4 взаимодействовать.
intercept [ɪn'tɛə'sept] 0 *v* 1. перехватывать; 2. прерывать.
Interchange [ɪn'tɛə'tseɪndʒ] 11,23 *n* обмен, взаимообмен.
interfere [ɪn'tɛə'fɪə] 8,17 *v* мешать; создавать помехи.
interference [ɪn'tɛə'fɪərəns] 8,17 *n* помеха; интерференция.
interior [in'tɪərɪər] 0 *a* внутренний; *n* внутренняя часть, внутреннее строение.
intermediate [ɪn'tɛə'mi:dʒət] *a* промежуточный.
internal [in'tɛə:nl] 0 *a* внутренний.
Interplanetary [ɪn'təplænɪtəri] 0 *a* межпланетный.
interpose [ɪn'tɛə'pouz] 5,17 *v* вставлять, вводить.
interpret [in'tɛə:prɪt] 12,20 *v* объяснять, толковать, понимать.
interpretation [in'tɛə:prɪ'teɪʃn] 12,20 *n* истолкование, объяснение, понимание.
interstellar [ɪn'tɛə'stelɪər] 11,15 *a* межзвездный.
into ['ɪntu] 0 *prep* в (отвечает на вопрос: куда?).
introduce [ɪn'trə'dju:s] 4,1 *v* 1. вводить; 2. знакомить.
introduction [ɪn'trə'dʌkʃn] 4,1 *n* введение; предисловие.
introductory [ɪn'trə'dʌktəri] 4,1 *a* вступительный, вводный; предварительный.
invent [ɪn'vent] 0 *v* изобретать.
investigate [in'vestɪgeɪt] 0 *v* исследовать.
involve [ɪn'velva] 2,9 *v* 1. включать (в себя); 2. быть связанным (с чем-л.), влечь за собой, вызывать, затрагивать (что-л.).

Involved [ɪn'vɔɪvd] 2,9 *p.p.* связанный с (чем-л.), рассматриваемый, данный, имеющийся, используемый (в функции правого определения). **ir-** [ɪr] *pref* со значением отрицания, например: **irregular** неправильный. **iron** ['aɪən] 5,18 *n* железо. **irregularity** [ɪ,regju'lærɪtɪ] 1,26 *n* 1. беспорядочность; 2. неровность. **irrespective of** (smith) [ɪrɪs'pektɪv] 8,ð/c *prep* независимо от (чего-л.). **item** ['aɪtəm] 4,26 *n* 1. предмет; 2. пункт; вопрос.

J

jet [dʒet] 0 *n* 1. струя; реактивная струя; 2. реактивный двигатель; 3. реактивный самолет; **jet propulsion** 1. реактивный двигатель; 2. реактивное движение. **jettison** ['dʒetɪsn] 4,14 *v* сбрасывать, выбрасывать (за борт). **job** [dʒɒb] *n* работа. **join** [dʒɔɪn] 0 *v* соединять(ся); присоединять(ся). **joint** [dʒɔɪnt] 12,12 *n* соединение,стык; а соединенный, общий, совместный. **journey** ['dʒɜːnɪ] 0 *n* путешествие; полет. **just** [dʒʌst] *adv* 1. только, лишь, именно; 2. только что; 3. точно, как раз; **just as** 1,24 точно так же, как; **just as ... so** так же, как и; **just now** только что.

K

keep [ki:p] (*kept*) 0 *v* 1. поддерживать, сохранять(ся), держать(ся); 2. оставаться (в определенном состоянии); 3. продолжать (в сочетании с герундием); **keep in mind** 6,3 помнить (о чем-л.); учитывать (что-л.). **key** [ki:] 0 *n* ключ; *a* основной, ключевой. **kind** [kaɪnd] 0 *n* 1. род; 2. сорт, вид. **know** [nou] (*knew, known*) 0 *v* знать; **it is well (commonly) known that** 11,ð/c общеизвестно. **knowledge** ['nɔɪdʒ] 0 *n* знание; **It is common knowledge that** 11,ð/c общеизвестно, что.

L

labour ['leɪbə] 7,10 *n* труд, работа. **lack** [læk] 3,28 *n* недостаток, нехватка, отсутствие; *v* недоставать (чес-

го-л.); испытывать недостаток (в чем-л.); не хватать (чего-л.). **land** [laɪnd] 0 *n* 1. земля; 2. страна; *v* приземляться, совершать посадку (высадку). **landing** ['lændɪŋ] 0 *n* посадка, высадка. **large** [la:dʒ] 0 *a* большой; *as large as* до (обычно перед цифрами, например: *as large as 500 miles* = до 500 миль). **largely** ['la:dʒlɪ] 0 *adv* главным образом. **last** [la:st] 0 *v* продолжаться, длиться; *a* 1. последний, 2. прошлый; *at last* 9,ð/c и наконец. **lastly** ['la:stli] 9,ð/c и наконец. **late** [leɪt] 0 *a* 1. поздний; 2. недавний, последний; *as late as* только в, уже в. **latter** ['lætə] 0 *a* последний (из двух упомянутых). **launch** ['laʊntʃ] 0 *v* запускать; 2. начинать, предпринимать. **launcher** ['laʊntʃə] 0 *n* пусковая установка. **launching** ['laʊntʃɪŋ] 0 *n* пуск, запуск. **law** [laʊ] 0 *n* закон. **lay** [leɪ] (*laid*) 0 *v* клесть, положить. **layer** ['leɪə] 0 *n* слой. **lead** [li:d] (*led*) 4,30 *v* 1. вести, возглавлять, руководить; 2. приводить (к чему-л.); заставлять. **learn** [lɜːn] (*learnt*) 0 *v* 1. учиться; 2. узнавать. **least** [li:st] 0 *a* превосходная степень от little наименьший; *at least* 1,15 по крайней мере. **leave** [li:v] (*left*) 4,22 *v* 1. оставлять; отрываться (от земли); 2. уходить; выходить, уезжать. **length** [leŋθ] 3,19 *n* длина; *at length* 8,10 подробно; *at some length* 8,10 в некоторых подробностях. **lengthen** ['leŋθən] 3,19 *v* удлинять. **less** [les] 0 *a* (сравнительная степень от little) меньший, менее, меньше. **let** [let] 0 *v* 1. позволять, допускать; 2. предположим, допустим, пусть (*so* начале повелительного предложения). **letter** ['letə] 0 *n* 1. буква; 2. письмо. **level** [levl] 0 *n* уровень; *a* 1. ровный; 2. горизонтальный. **lie** [laɪ] (*lay, lain*) 0 *v* 1. лежать, быть расположенным, находиться; 2. заключаться, состоять (в чем-л.). **life** [laɪf] 0 *n* 1. жизнь; 2. срок службы (прибора).

lift [lif特] 0 *п* 1. подъем; 2. подъемная сила; *в* поднимать(ся).

light [laɪt] 0 *п* свет; *а* 1. светлый; 2. легкий.

lighten ['laɪtn] 0 *в* облегчать.

like [laɪk] 0 *в* нравиться, любить; *а* похожий, подобный; *adv* подобно, как.

likely ['laɪklɪ] 2,1 *а* вероятный (в составе сложного сказуемого типа: *is likely to return*); *It is likely that* 11,6/с по-видимому; *It is more likely that* 11,6/с несомненно (более чем вероятно), что.

lien ['laɪkn] 2,1 *в* сравнивать (с чем-л.), уподоблять (чему-л.).

likewise ['laɪkwaɪz] 9,4 точно так же, аналогичным образом.

limit ['lɪmɪt] 0 *п* предел, ограничение; *в* ограничивать.

limitation [,lɪmɪ'teɪʃn] 0 *п* ограничение.

line [laɪn] 0 *п* 1. линия; 2. направление (развития).

linear ['laɪnɪə] 8,4 *а* линейный, прямолинейный.

link [lɪŋk] 2,33 *п* звено (цепи); связь; соединение; *в* связывать(ся); соединять(ся).

liquid ['lɪkwid] 0 *п* жидкость, жидкое вещество; *а* жидкий.

list [lɪst] 0 *п* список; *в* составлять список; перечислять, вносить в список.

little ['lɪtlɪ] 0 *а* маленький; *adv* мало; *а* little немногого.

live ['lɪv] 0 *в* жить, существовать.

load ['ləud] 0 *п* груз, нагрузка; *в* загружать, нагружать.

local ['ləukl] 0 *а* местный.

locate ['ləʊ'keɪt] 2,32 *в* 1. определять местоположение; обнаруживать; 2. располагать.

long [lɔŋ] 0 *а* 1. длинный, большой (о расстоянии); 2. длительный (о времени); *adv* 1. давно; 2. в течение длительного времени; *long ago* давно; *no longer* 3,19 больше не; *as long as* (до тех пор), поскольку; *so long as* при условии, что; поскольку; *long before* задолго (до того, как).

look [lʊk] 0 *в* смотреть.

loose ['lu:s] 8,18 *а* свободный, неплотный, слабый.

lose [lu:z] (*lost*) 0 *в* терять.

loss [lɒs] 0 *п* потеря.

lot [lɒt] 0 *п* употребляется в выражениях; *a lot of*, *lots of* много.

low [ləʊ] 0 *а* низкий; *as low as* до (перед цифрами).

lower ['ləʊə] 0 *в* снижать, понижать.

luminosity [,lu:mi'nɔsɪti] 5,10 *п* свече-ние.

luminous ['lu:minəs] 5,10 *а* светящий-ся; раскаленный.

М

magnitude ['mægnɪtju:d] 0 *п* 1. величина; 2. важность, значение.

main [meɪn] 0 *а* главный, основной.

mainly ['meɪnlɪ] 0 *adv* главным обра-зом; в основном.

maintain [meɪnt'eɪn] 0 *в* 1. поддержи-вать, сохранять; 2. обслуживать; 3. считать, утверждать.

maintenance ['meɪntenəns] 0 *п* 1. под-держание, сохранение; 2. обслужи-вание, ремонт.

major ['meɪdʒə] 0 *а* главный, основ-ной, важный.

make [meɪk] (*made*) 0 *в* 1. делать; 2. заставлять (+инфinitив); **make certain** (sure) 6,6/с удостовериться; **make provision for** (smth) 2,21 пре-дусматривать (что-л.); принимать меры для (чего-л.); обеспечивать (что-л.); **make out** 3,21 разбираться (в чем-л.); понимать (что-л.); **make reference to** (smth) 6,7 ссылаться на (что-л.); упоминать (что-л.); **make up** 3,21 1. составлять; 2. компенсировать, восполнять, возме-щать; **make use of** (smth) 6,12 ис-пользовать, применять (что-л.); *is made use of* (smth) 6,12 использует-ся (что-л.); *use is made of* (smth) 6,12 используется (что-л.).

mankind [mæn'kaɪnd] 0 *п* человечес-во.

manner ['mænə] 0 *п* способ, метод.

many ['meni] 0 *а* много, многие.

mark [mɑ:k] 0 *п* знак, отметка; *в* от-мечать, помечать.

marked [ma:kɪt] 0 *а* заметный, значи-тельный.

material [mæ'tɪəriəl] 6,11 *а* 1. матери-альный; 2. существенный, важный.

materially [mæ'tɪəriəli] 6,11 *adv* сущес-твенно, значительно.

matter ['mætə] 5,2 *п* 1. материя, ве-щество; 2. вопрос, дело; *as a mat-ter* of fact фактически, на самом деле; *no matter* (how, when, what) независимо от того (как, когда, ка-кой, почему и т. д.); *subject matter* основной вопрос, сущность, содер-жание.

may [meɪ] (*might*) 0 *в* 1. мочь, иметь возможность, сделать (что-л.);

2. может быть, вероятно (перед *перфектным инфинитивом*); 3. мог бы (в *сослагательном наклонении*). **mean** [mi:n] (*meant*) 0 *v* 1. значить, означать; 2. подразумевать; *a средний*.

meaning ['mi:nɪŋ] 0 *n* значение.

means [mi:nz] 0 *n pl* средство; *by means* посредством, с помощью; *by no means* 8,8 никоим образом.

measure ['meʒə] 0 *n* мера, степень; *u* измерять.

media ['mi:dɪə] 6,4 *pl* от **medium**.

medium ['mi:dɪəm] 6,4 *n* 1. среда; 2. средство; *a средний*.

meet [mi:t] (*met*) 0 *v* 1. встречать(ся); 2. удовлетворять (требованиям); *met with p.p.* с которым встречаются.

mention ['menʃn] 0 *v* упоминать, ссылаться на (что-л.); *make mention (of smth)* 6,7 упоминать (что-л.); *mention is made (of smth)* упоминается (что-л.); *not to mention* 11,11 не говоря (о чем-л.).

mere [mɪə] 10,32 *a* 1. простой; 2. лишь, только, один лишь.

merely ['mɪəli] 10,32 *adv* только, лишь.

middle ['midl] 10,33 *n* середина; *a средний*.

mile [maɪl] 0 *n* миля (= 1609 м.).

mind [maɪnd] 0 *n* 1. ум; 2. мнение; *bear (keep) in mind* 6,3 помнить (о чем-л.), учить (что-л.).

minute ['maɪnɪt] 0 *a* мельчайший.

mis- [mis] *pref* придает слову значение неправильно, ложно, например: *misunderstand* неправильно понять.

miss [mɪs] 0 *v* недоставать, не хватать; 2. не попадать; промахнуться.

missile ['mɪsail] 3,16 *n* ракета; реактивный снаряд.

missing ['mɪsɪŋ] 0 *a* недостающий.

mission ['mɪsɪn] 0 *n* 1. вылет, полет; 2. задача, программа (полета).

mistake [mɪ'steɪk] 0 *n* ошибка; (*mistook, mistaken*) 0 *v* ошибаться.

mix [mɪks] 4,39 *v* смешивать.

mixed [mɪkst] 4,39 *a* смешанный.

mixture ['mɪkstʃə] 4,39 *n* смесь.

modern ['mɒdən] 0 *a* современный.

modification ['mɒdɪfɪ'keɪʃn] 7,18 *n* изменение, модификация.

modify ['mɒdɪfai] 7,18 *v* видоизменять, модифицировать, вносить изменения.

month [mʌnθ] 0 *n* месяц.

moon [mu:n] 0 *n* луна.

more ['mɔ:] 0 *a* сравнительная степень от **much**, *many* более, больший;

еще; *more or less* 11,11 более или менее; *more simply* 11,13 проще говоря; *more specifically* 11,13 (говоря) точнее; *once more* 7,29 еще раз. **moreover** ['mɔ:gəʊvə] 5,27 более того, к тому же, кроме того.

most [maʊst] 0 *a* *превосходная степень от much, many* наибольший; *adv* больше всего; *at most* 11,11 в лучшем случае.

mostly ['moustli] 0 *adv* главным образом.

motion ['mou[n]] 0 *n* движение; *set in (into)* motion приводить в движение.

mount [maʊnt] 0 *v* устанавливать, монтировать.

move [mu:v] 0 *v* двигаться(ся), передвигаться(ся).

much [mʌtʃ] 0 *adv* 1. много; 2. намного, гораздо, (перед *прилагательными в сравнительной степени*).

multiply ['mʌltiplai] 0 *v* умножать.

must [maʊst] 0 *v* 1. должен, следует, необходимо (сделать что-л.); 2. должно быть (перед *перфектным инфинитивом*).

N

name [neɪm] 0 *n* имя; название; *u* называть.

namely ['neɪmlɪ] 0 *adv* (а) именно.

narrow ['nærou] *a* узкий.

natural ['nætʃrəl] 0 *a* природный, естественный.

nature ['nætʃə] 0 *n* 1. природа; 2. характер.

near [nɪə] 0 *a* близкий; *adv* вблизи, около.

nearly ['nɪəli] 1,20 *adv* почти, приблизительно.

nebula ['nebju:lə] *n* туманность.

nebulae ['nebju:lɪ] *pl* от **nebula**.

necessarily ['nesɪsərɪli] 0 *adv* обязательно.

necessary ['nesɪsəri] 0 *a* необходимый, нужный.

necessity [nɪ'sesɪtɪ] 0 *n* необходимость; *of necessity* неизбежно; обязательно.

need [ni:d] 0 *n* нужда, потребность; *v* 1. нуждаться (в чем-л.), требоваться; 2. должен, следует, нужно, надо.

needless ['ni:dli:s] *a* иенужный, излишний; *needless to say* 11,3 нечего и говорить, само собой разумеется.

negative ['negatɪv] 0 *a* отрицательный.

negligible [ˈneglɪdʒəbl] 0 *a* незначительный, ничтожный.

neighbo(u)r [ˈneɪbə] *n* 11,19 сосед(ка), соседний объект; *v* граничить.

neighbo(u)rhood [ˈneɪbəhʊd] 11,19 *n* соседство, близость; *In the neighbourhood of (smth)* приблизительно, около.

neighbo(u)ring [ˈneɪbərɪŋ] 11,19 *a* соседний, смежный.

neither [ˈnaɪðə] 0 *pron* ни тот, ни другой; *a* никакой; *cf* также не (*перед глаголом*); **neither ... nor** ни ... ни.

net [net] 11,25 *n* сеть; *a* общий, суммарный, чистый (*вес*).

never [ˈnevə] 0 *adv* никогда.

nevertheless [ˌnevəðəˈles] 3,2 *adv* тем не менее, однако, все же.

next [nekst] 0 *a* следующий; *adv* 9,15 далее, затем.

no [nou] 0 *a* никакой; **no longer** 3,19 больше не; **no matter** 5,2 независимо от того.

non-[nɔn] 8,4 *pref* (означает отрижение, например, *non-conductor* непроводник).

nonlinear [ˈnɔnˌlɪnɪər] 8,4 *a* нелинейный.

nor [nɔr] 7,14 *cf* также ... не.

normal [ˈnɔrməl] 0 *a* нормальный, обычный.

notable [ˈnɔtbəbl] 0 *a* 1. замечательный, выдающийся (о человеке); 2. заметный (о количестве).

note [nɔ:t] 0 *n* заметка, запись; *v* замечать, отмечать.

notice [ˈnɔutɪs] 0 *n* заметка; *v* замечать.

nothing [ˈnʌθɪŋ] 0 *pron* ничто, ничего.

not until [ˈnɒt ˈʌntɪl] 7,22 *prp* только в; только после; *cf* только тогда, когда.

novel [ˈnɔvəl] 12,19 *a* новый, современный.

now [naʊ] 0 *adv* теперь, сейчас; 9,4 *cf* 1. итак; 2. далее; **now that** 8,8/*ð* теперь, когда.

nowadays [ˈnaʊədeɪz] 0 *adv* в настоящее время, в наши дни.

nuclei [ˈnju:klɪai] *pl* от **nucleus**.

nucleus [ˈnju:klɪəs] 0 *n* ядро.

number [ˈnʌmbə] 5,6 *n* 1. количество, число; 2. номер; **a number of** ряд, несколько; *v* насчитывать.

numerable [ˈnju:tiərəbl] 12,15 *a* исчислимый.

numerical [ˈnju:tiərɪkl] 12,15 *a* числовой, цифровой.

numerically [ˈnju:tiərɪklɪ] 12,15 *adv* в цифрах, в числах.

numerous [ˈnju:tiərəs] 12,15 *многочисленный; много*.

О

obey [əˈbeɪ] 10,34 *v* подчиняться.

object [ˈəbɒdʒɪkt] 0 *n* 1. предмет; 2. цель.

objective [əbˈdʒektɪv] *n* цель.

observable [əbˈzə:vəbl] 0 *a* поддающийся наблюдению, наблюдаемый, заметный.

observation [əbzəˈveɪʃn] 0 *n* 1. наблюдение, измерение; 2. результаты наблюдений.

observe [əbˈzə:v] 0 *v* 1. наблюдать, замечать; 2. соблюдать (закон, *правило*).

obstacle [ˈəbstəkl] 0 *n* препятствие.

obtain [əbˈteɪn] 0 *v* получать, приобретать.

obtainable [əbˈteɪnəbl] 0 *a* достижимый, доступный.

obvious [ˈəbviəs] 0 *a* очевидный.

obviously [ˈəbviəsli] 0 *adv* несомненно, конечно.

occasion [əˈkeɪzən] 10,30 *n* случай, обстоятельство.

occasional [əˈkeɪzənl] 10,30 *a* случайный, редкий.

occasionally [əˈkeɪzənlɪ] 10,30 *adv* иногда, время от времени.

occur [əˈkə:] 5,15 *v* 1. происходить, иметь место, случаться; 2. встречаться.

occurrence [əˈkʌrəns] 5,15 *n* случай; происшествие.

of [əv] 0 *prp* 1. выражает отношения, передаваемые родительным падежом (кого? чего?); 2. из (один из многих); 3. из (какого-то материала); 4. о, об, относительно.

off [əf] 0 *adv* прочь.

offer [ˈəfə] *n* предложение; 0 *v* 1. предлагать, давать; 2. оказывать (сопротивление).

often [ˈɔ:fn] 0 *adv* часто.

old [ould] 0 *a* старый, давний, прежний.

on [ən] 0 *prp* 1. на (отвечает на вопросы: где? на чем?) 2. о, об, по (отвечает на вопрос: о чем?); 3. после, при (перед герундием).

once [wʌns] 7,29 *adv* 1. однажды, 2. когда-то; *cf* 1. если; 2. когда; как только; *at once* 7,29 сразу; *once more* 7,29 еще раз, снова.

one [wʌn] 0 *num* один; *prn* 1. (занимает упомянутое ранее существительное); 2. (подлежащее в неопредел.

деленно-личном предложении) мы; one another друг друга.
only [‘ounli] 0 *adv* только; the only единственный.
open [‘o:pən] 0 *v* 1. открывать(ся); 2. размыкать (электрическую цепь); a открытый; незамкнутый (об электрической цепи).
operate [‘erəgeit] 0 *v* 1. работать, действовать; 2. управлять, приводить в действие.
operation [‘erə’geiʃn] 0 *n* 1. работа, действие; 2. управление; be in operation 2,5 действовать, работать, быть в действии; in operation действующий, работающий, который действует, работает; put into operation 6,26 вводить в действие.
operational [‘erə’teiʃnəl] 0 *a* действующий.
oppose [ə’po:s] 0 *v* 1. противопоставлять; 2. оказывать сопротивление.
opposite [‘əpəzit] 0 *a* противоположный.
or [ɔ:] 0 *cj* 1. или; 2. то есть, иначе.
order [‘ɔ:də] 5,4 *n* 1. порядок, последовательность; 2. порядок, исправность; in order to 0 *cj* для того, чтобы; in order that *cj* для того, чтобы; с тем, чтобы.
ordinary [‘ɔ:dnrə] 1,22 *a* обычный, обыкновенный, простой.
origin [‘ɔ:ri:dʒin] 0 *n* 1. источник, начало; 2. происхождение.
original [‘ɔ:ri:dʒənl] 0 *a* первоначальный, исходный.
originate [ə’rigzineit] 0 *v* происходить, возникать, брать начало.
other [‘lðə] 0 *a* другой; each other 8,ð/c друг друга.
otherwise [‘lðəwaiz] 9,13 *adv* 1. другим способом, иначе; 2. в других отношениях, в остальном; 3. (употребляется в значении, противоположном только что высказанному, например: whether positive or otherwise положительные или отрицательные) *cj* иначе, в противном случае.
out [aut] 0 *adv* вне, наружу, вон.
outer [‘autə] 5,22 *a* внешний, наружный.
outermost [‘autəmoust] 5,22 *a* самый удаленный.
outlet [‘autlet] 4,2 *n* выпуск; выхлоп.
out of [‘aut əv] 0 *prep* из (отвечает на вопрос; откуда?); out of date 8, ð/c устарелый.
output [‘autput] 0 *n* 1. выпуск, продукция; 2. мощность (на выходе).
outset [‘autset] 1,1 *n* начало.
outside [‘autsaɪd] 10,1 *a* наружный, внешний; *prep* вне, за пределами.
over [‘ouvə] 0 *prep* 1. над (чем-л.); 2. через (с глаголами движения); 3. выше (какой-то величины); 4. по сравнению (с чем-л.); 5. на протяжении, в течение (какого-то периода времени); 6. на (какое-то расстояние).
over- [‘ouvə] *pref* соответствует приставкам сверх-, над-, пере-, например: overestimate *v* переоценивать.
overall [‘ouvərɔ:l] 4,17 *a* полный, общий.
overcome [‘ouvə’klm] (overcame, overcome) 0 *v* преодолевать.
overestimate [‘ouvər’estimeit] 0 5,30 переоценивать.
owing to (smth) [‘ouin] 8,11 *prep* благодаря (чему-л.), вследствие (чего-л.).
own [o:vn] 0 *a* собственный; *v* владеть, обладать.

Р

paper [‘peɪpə] 0 *n* 1. бумага; 2. газета; 3. статья; 4. научный доклад.
parent [‘peɪərənt] *a* 1. исходный; 2. основной.
par example [‘parəg’zə:mp] например.
part [pa:t] 0 *n* 1. часть; 2. участие; for the most part 8, ð/c главным образом, по большей части; in part 8, ð/c частично, отчасти; on the part of (smth) 8, ð/c со стороны (кого-л.); to take part 0 принимать участие.
partial [‘pa:ʃl] 0 *a* частичный.
participate [pa:’tisipeit] 0 *v* участвовать.
particle [‘pa:tikl] 0 *n* частинка.
particular [‘pa:tikjulə] 0 *a* 1. данный; 2. особый; in particular в особенности; в частности; go into particulars 6,26 вдаваться в подробности.
particularly [‘pa:tikjuləli] 0 *adv* особенно; в частности.
partly [‘pa:tl] 0 *adv* частично.
pass [pa:s] 0 *v* 1. проходить; 2. пропускать.
passage [‘pæsɪdʒ] 0 *n* 1. прохождение; 2. проход, канал.
past [pa:st] 0 *a* прошлый; истекший; мимо (чего-л.); *prep* за, после (чего-л.).

path [pa:θ] 0 *n* 1. путь; 2. траектория.
 pattern [ˈpætən] 0 *n* 1. образец; пример; 2. диаграмма, схема; 3. система; 4. рисунок.
 pay [peɪ] (paid) 0 *v* платить; pay attention обращать внимание.
 payload [ˈpeɪləud] 9,12 *n* полезный груз.
 peace [pi:s] 0 *n* мир.
 penetrate [ˈpenɪtreɪt] 0 *v* проникать.
 per [pə:] *prep* на (какую-то единицу); в (час, год и т. п.).
 per cent [pə'sent] *n* процент.
 percentage [pə'sentɪdʒ] 9,9 *n* процент, процентное отношение.
 perfect [pə'fekt] 0 *v* совершенствовать, улучшать.
 perform [pə'fɔ:m] 0 *v* выполнять, осуществлять.
 performance [pə'fɔ:məns] 0 *n* 1. выполнение; 2. характеристика (техническая, летно-тактическая и т. п.).
 perhaps [pə'hæps] 0 *adv* возможно, может быть.
 permissible [pə'mɪsəbl] 4,6 *a* допустимый, позволительный.
 permission [pə'mɪʃn] 4,6 *n* разрешение, разрешение.
 permit [pə'mɪt] 4,6 *v* позволять, допускать.
 phenomēna [fɪ'nɒmɪnə] *pl* от phenomēnon.
 phenomēnop [fɪ'nɒmɪnəp] 0 *n* явление.
 pick [pɪk] 6,16 *v* выбирать; pick up подбирать, принимать (сигналы); собирать (сведения).
 picture [ˈpɪktʃə] 0 *n* картина, изображение.
 piece [pi:s] 0 *n* 1. кусок, часть; 2. отдельный предмет.
 pile [paɪl] 9,18 *n* реактор.
 place [pleɪs] 0 *n* место; *v* помещать; place emphasis 6,6/с подчеркивать, придавать особое внимание; take place иметь место.
 plane [pleɪn] 0 *n* 1. самолет; 2. плоскость.
 plant [plɑ:nt] 0 *n* 1. оборудование, установка, станция; 2. предприятие.
 play [pleɪ] 0 *n* 1. игра; 2. действие, деятельность; *v* играть.
 point [pɔɪnt] 0 *n* 1. точка; 2. положение, вопрос, дело; at this point 2,10 здесь, на этом этапе, на этой стадии, в этом вопросе; in point рассматриваемый; о котором идет речь; point of view 2,25 точка зрения; view point 2,25 точка зрения; up to this point 2,10 до сих пор; *v* 2,10 указывать; point out указывать, отмечать.
 poor [puə] 0 *a* 1. бедный; 2. плохой.
 portion [ˈpɔ:ʃn] *n* часть, доля.
 pose [poʊz] 5,17 *v* ставить, предлагать (вопрос, задачу).
 position [pə'zɪʃn] 6,2 *n* положение; be in a position (to do smth) 6,2 быть в состоянии (сделать что-л.).
 positive ['pozɪtɪv] 0 *a* положительный.
 possess [pə'zes] 0 *v* обладать, владеть, иметь.
 possibility [pə'sə'biliti] 0 *n* возможность.
 possible [ˈpɔ:səbl] 0 *a* возможный.
 post- [pəʊst] *pref* соответствует приставкам *после-*, *по-*, *например*: post-war *a* послевоенный.
 pound [paʊnd] 0 *n* фунт (=453,6 г).
 power [ˈpaʊə] 0 *n* 1. энергия, мощность; 2. способность, производительность; 3. степень (математическая); 4. государство; *v* оборудовать, снабжать (силовой установкой).
 power plant [ˈpaʊər 'pla:nt] 0 силовая установка.
 practice [ˈpræktɪs] 0 *n* практика, действие; put into practice 6,26 вводить в действие, осуществлять.
 pre- [pri:] *pref* (соответствует приставкам *пред-*, *до-*, *например*): prehistoric *a* доисторический.
 precaution [prɪ'ke:ʃn] 10,19 *n* мера предосторожности.
 precede [pri'si:d] 2,27 предшествовать (чему-л.).
 precise [pri'saɪz] 0 *a* точный, to be more precise 7,23 более точно, точнее.
 precision [pri'sɪzɪn] 0 *n* точность.
 predict [pri'dikt] 0 *v* предсказывать.
 prefer [pri'fər] *v* предпочитать.
 preparation [prɪ'pe'reɪʃn] 0 *n* приготовление, подготовка.
 presence [ˈprezəns] 1,29 *n* присутствие, наличие.
 present [ˈprezənt] 1,29 *a* 1. присутствующий, имеющийся в наличии; 2. настоящий, современный; at present 0 в настоящее время; be present иметься, присутствовать.
 present [pri'zənt] 0 *v* 1. предоставлять, давать; 2. представлять собой.
 presentation [prezən'teɪʃn] 0 *n* 1. предоставление; 2. изображение, описание.
 press [pres] 0 *v* давить, нажимать.
 pressure [ˈpreʃə] 0 *n* 1. давление; 2. напряжение (электрическое).

presumably [prɪ'zju:məblɪ] 11, *ð/c* *adv* по-видимому.

prevent [prɪ'vent] 3,31 *v* 1. мешать, препятствовать, не позволять, не допускать; 2. предупреждать, предотвращать.

previous ['prɪ:vjəs] 8,ð/c *a* предыдущий, прежний; **previous to** (smth) 8, *ð/c* до (чего-л.), перед (чем-л.).

previously ['prɪ:vjəsli] 8, *ð/c* *adv* 1. заранее, предварительно; 2. раньше.

primarily ['prɪmaɪərlɪ] 0 *adv* прежде всего; главным образом.

primary ['prɪmaɪərɪ] 0 *a* 1. главный, основной; 2. первичный, первоначальный.

principal ['prɪncɪpəl] 0 *a* главный, основной.

principally ['prɪncɪpələlɪ] 0 *adv* главным образом, в основном.

principle ['prɪnsɪpl] 0 *n* 1. принцип; 2. закон.

prior ['prɪərɪə] 7,8 *a* предварительный, предшествующий; **prior to** *prp* до, перед.

priority ['prɪɔrɪtɪ] 7,8 *n* приоритет, первенство, преимущество.

probability [prɪ'bə'bɪlɪtɪ] 0 *n* вероятность; **in all probability** 11, *ð/c* по всей вероятности.

probable ['prɒbəbəl] 0 *a* вероятный.

probe [prəʊb] *v* 1. исследовать, изучать; 2. зондировать.

procedure [prə'si:dʒə] *n* 1. метод, способ; 2. процедура.

process ['prəʊses] 7,5 *n* процесс.

process [prə'ses] 7,5 *v* обрабатывать.

processing [prə'sesɪŋ] 7,6 *n* обработка.

produce [prə'dju:s] 0 *v* 1. производить, вырабатывать; 2. вызывать; быть причиной.

product ['prɒdʌkt] 0 *n* 1. продукт, продукция; 2. результат.

production [prə'dʌlkʃn] 0 *n* производство, получение; образование.

profound [prə'faʊnd] 0 *a* глубокий; когнитивный.

progress ['prəʊgrɛs] 0 *n* прогресс, развитие; **be in progress** 2,5 происходит, иметь место.

project ['prə:dʒekt] 3,27 *v* 1. проект; 2. программа исследований.

project [prə'dʒekt] 3,27 *v* 1. проектировать, придумывать; 2. выдаватьсь, выступать; 3. бросать.

projectile ['prə:dʒektaɪl] 3,27 *n* снаряд.

promise ['prɒmɪs] 4,35 *v* обещать, давать надежды (на что-л.); *n* 1. обещание; 2. перспектива.

promising ['prɒmɪsɪŋ] 4,35 *a* перспективный, многообещающий.

proof [pru:f] 0 *n* доказательство; *a* непропонциаемый, устойчивый.

propagate ['prɒprəgeɪt] 0 *v* распространять(ся).

propel [prə'pel] 0 *v* приводить в движение.

propellant [prə'pelənt] 4,32 *n* ракетное топливо.

proper ['prɒpər] 0 *a* 1. надлежащий, соответствующий; 2. правильный.

properly ['prɒpərlɪ] 0 *adv* правильно; надлежащим образом, соответствующим образом; **more properly** 11,3 говоря точнее.

property ['prɒpətɪ] 0 *n* свойство.

proposal [prə'prouzəl] 0 *n* предложение, проект.

propose [prə'prouz] 0 *v* предлагать.

propulsion [prə'pʌlʃn] 0 *n* 1. движение; 2. движущая сила; 3. двигатель.

propulsive [prə'pʌlsɪv] 0 *a* движущийся.

prospect ['prɒspekt] 9,1 *n* перспектива.

protect [prə'tekt] 0 *v* защищать, предохранять.

protective [prə'tektɪv] 0 *a* защитный, предохранительный.

prove [pru:v] 0 *v* 1. доказывать; 2. оказываться (+инфinitive).

provide [prə'veɪd] 2,21 *v* 1. давать, обеспечивать, снабжать; 2. представлять собой, являться.

provided [prə'veɪdɪd] 2,21 *cj* при условии, что; если только.

providing [prə'veɪdɪŋ] 2,21 *cj* при условии, что; если только.

provision [prə'veɪzɪn] 0 *n* 1. обеспечение; 2. мера (предосторожности); **make provision (for smth)** 2,21 предусматривать (что-л.); обеспечивать (что-л.); принимать меры (для чего-л.); **provision is made (for smth)** 2,21 предусматривается (что-л.); принимаются меры (для чего-л.).

publish ['plʌblɪs] 9,10 *v* публиковать; печатать.

pull [pʊl] 0 *v* тянуть.

pulse [pʌls] *n* импульс, толчок.

pure [jʊər] 8,19 *a* чистый, беспримесный.

purity ['pjʊərɪtɪ] 8,19 *n* чистота.

purpose ['pa:pas] 0 *n* цель, назначение.

push [puʃ] 0 *v* толкать.

put [put] (*put*) 0 *v* класть, ставить; **put forward** 8,5 выдвигать, предлагать; **put into operation** 6,26 вводить в действие.

дить в действие; *put into practice* 6,26 вводить в действие, осуществлять; *put into use* 6,26 вводить в действие, начинать применять (использовать); *put it in another way* 11,13 иначе говоря.

Q

quality ['kwɔliti] 0 *n* качество.
quantity ['kwɔntiti] 11,27 *n* 1. количество; 2. величина.
question ['kwestʃn] 0 *n* вопрос; проблема; (*the matter*) *in question* (вопрос), о котором идет речь, рассматриваемый.
quick ['kwik] 0 *a* быстрый.
quite ['kwait] 0 *adv* вполне, совершенно.

R

radiant ['reidiant] 10,13 *a* лучистый, излучающий.
radiate ['reideit] 0 *v* излучать(ся).
raise [reiz] 0 *v* поднимать, повышать.
ramjet ['ræmdʒet] 0 *n* прямоточный двигатель.
random ['rændəm] 11,24 *a* случайный, произвольный, беспорядочный.
range [reindʒ] 0 *n* 1. диапазон, предел; 2. область; *v* 1. простираться; 2. колебаться (в известных пределах).
rapid ['ræpid] 0 *a* быстрый.
rate [reit] 0 *n* 1. скорость, темп; 2. норма; *at any rate* 11,11 во всяком случае.
rather ['ra:ðə] 0 *adv* довольно, до некоторой степени; 9,13 скорее, вернее, пожалуй; *rather than* 0 *1. a* не; 2. вместо того, чтобы.
ratio ['reisjou] 4,11 *n* отношение, коэффициент, степень.
raw [rɔ:] 7,2 *a* сырой; необработанный.
ray [reɪ] 0 *n* луч.
re- [ri:] *pref* выражает повторность действия: снова, заново, еще раз, например: *rewrite* переписать, написать еще раз.
reach [ri:tʃ] 0 *v* 1. достигать, доходить до; 2. простираться; *n* досягаемость.
read [ri:d] (*read*) 0 *v* 1. читать; 2. показывать (о приборе).
readily ['redili] 1,30 *adv* легко, без труда.
reading ['ri:dɪŋ] *n* показание, отсчет (прибора).

ready ['redi] 0 *a* 1. готовый, быстрый.
real [ri:əl] 0 *a* действительный, настоящий.
reality [ri:'æliti] 0 *n* действительность; реальность; *in reality* 11,3 в действительности.
realize ['ri:əlaiz] 0 *v* 1. осуществлять, реализовывать; 2. понимать, отдавать отчет (в чем-л.); *It is generally realized that* 11,6/с широко известно, что.
really ['ri:əli] 0 *a* действительности, на самом деле, по существу.
rear [ri:ə] 0 *n* тыл; задняя (хвостовая) часть.
reason ['ri:zn] 0 *n* причина, основание.
reasonable ['ri:zənəbl] 0 *a* 1. приемлемый; 2. разумный.
reasonably ['ri:zənəbli] 0 *adv* довольно, достаточно.
recall [ri'kɔ:l] 7,19 *v* вспоминать.
receive [ri'si:v] 0 *v* 1. получать; 2. принимать.
receiver [ri'si:və] 0 *n* (радио) приемник.
recent ['ri:snt] 0 *a* недавний, последний, современный.
recently ['ri:sntli] 0 *adv* за последнее время, недавно; *until recently* до недавнего времени.
reception [ri'sepʃn] 0 *n* прием.
recognition [rekəg'nisən] 10,10 *n* 1. узнавание, опознавание; 2. признание.
recognizable ['rekəgnizaibl] 10,10 *a* распознаваемый, различимый.
recognize ['rekəgnaiz] 10,10 *v* 1. узнавать; распознавать; 2. признавать, обнаруживать.
reconnaissance [ri'kɔnisiəns] *n* разведка.
record ['rekɔ:d] 0 *n* документ, запись.
record [ri'kɔ:d] 0 *v* записывать, регистрировать.
recorder [ri'kɔ:də] 0 *n* самопищущий прибор.
rectification ['rektili'keʃn] 8,3 *n* выпрямление (тока), детектирование.
rectifier ['rektiliə] 8,3 *n* выпрямитель (тока), детектор.
rectify ['rektilifai] 8,3 *v* выпрямлять (ток), детектировать.
reduce [ri'dju:s] 0 *v* 1. уменьшать, понижать, ослаблять; 2. сводить (к чему-л.).
reduction [ri'dʌkʃn] 0 *n* уменьшение, снижение.
re-entry [ri:'entri] 4,21 *n* возвращение (в плотные слои атмосферы).

refer [rɪ'fə:] 0 *v* 1. относиться (к че-
му-л.); 2. ссылаться; be referred to
as (smth) 6,7 называться, имено-
ваться, обозначаться.

reference ['refrəns] 0 *n* 1. ссылка;
2. упоминание; make reference
6,7 ссылаться (на что-л.); упоми-
нать (что-л.); reference is made
6,7 делается ссылка (на что-л.),
упоминается (что-л.); with (in) re-
ference to (smth) 8, д/с в отноше-
нии, относительно (чего-л.).

reflect [rɪ'flekt] 0 *v* отражать.

reflective ['rɪ'flektɪv] 0 *a* отражающий.

regard [rɪ'ga:d] 0 *n* 1. отношение;
2. внимание; 0 *v* 1. считать, рас-
сматривать; 2. касаться, иметь от-
ношение; as regards (smth) 6,24 что
касается, в отношении (чего-л.);
with (in) regard to (smth) 6,24 от-
носительно, что касается, в отно-
шении (чего-л.).

regarding [rɪ'ga:dɪŋ] 0 *prep* относи-
тельно, что касается.

regardless [rɪ'ga:dls] 0 *adv* независи-
мо (от чего-л.); несмотря на
(что-л.).

region ['ri:dʒn] 6,9 *n* область, район

regular ['regjulə] 1,26 *a* правильный;
регулярный; постоянный.

regularity [,regjul'ɪərɪtɪ] 1,26 *n* пра-
вильность, регулярность, порядок,
система.

reject [rɪ'dzekt] 0 *v* отвергать, откло-
нять.

relate [rɪ'leɪt] 0 *v* 1. относить(ся)
(к чему-л.); 2. связывать (что-л.);
устанавливать отношения; be related to (smth) быть связанным
(с чем-л.).

relation [rɪ'leɪʃn] 0 *n* отношение,
связь; in relation to (smth) относи-
тельно, что касается (чего-л.).

relationship [rɪ'leɪʃn] 0 *n* зависи-
мость, взаимосвязь.

relative ['relətɪv] 0 *a* относительный,
сравнительный.

relatively ['relətɪvli] 0 *adv* относитель-
но.

relativity [,relə'tiviti] 0 *n* 1. относи-
тельность; 2. теория относитель-
ности.

release [rɪ'lɪ:s] 0 *n* освобождение, вы-
свобождение; 0 *v* 1. освобождать,
высвобождать; 2. отпускать, выпус-
кать.

reliability [rɪ'laiə'biliti] 0 *n* надеж-
ность.

reliable [rɪ'laiəbəl] 0 *a* надежный.

rely (on, upon) [rɪ'lai] 0 *v* полагаться,

надеяться (на что-л.), зависеть (от
чего-л.).

remain [rɪ'meɪn] 0 *v* оставаться.

remark [rɪ'ma:k] 1,7 *n* замечание.

remarkable [rɪ'ma:kəbl] 1,7 *a* замеча-
тельный.

remember [rɪ'membə] 0 *v* помнить,
вспоминать.

remote [rɪ'mout] 0 *a* 1. отдаленный;
2. дистанционный.

removable [rɪ'mu:vəbl] 8,24 *a* подвиж-
ной, съемный.

removal [rɪ'mu:vəl] 8,24 *n* удаление,
устранение.

remove [rɪ'mu:v] 8,24 удалять, уби-
рать, отодвигать.

repeat [rɪ'pi:t] 0 *v* повторять.

repel [rɪ'pel] 0 *v* отталкивать.

replace [rɪ'pleɪs] 9,17 *v* замещать, за-
менять.

replacement [rɪ'pleɪsmənt] 9,17 *n* заме-
щение, замена.

report [rɪ'po:t] 0 *n* сообщение, отчет,
доклад; *v* сообщать.

represent [,reprɪ'zent] 0 *v* 1. пред-
ставлять, быть представителем;
2. представлять, изображать.

representation [,reprɪzə'teɪʃn] 0 *n*
представление, изображение, изло-
жение.

reproduce [,rɪ:prə'dju:s] 0 *v* воспроиз-
водить.

reproduction [,rɪ:prə'dʌkʃn] 0 *n* вос-
произведение.

repulsion [rɪ'plʌʃn] 0 *n* отталкивание.

request [rɪ'kwest] 0 *n* просьба, требо-
вание.

require [rɪ'kwaɪr] 0 *v* требовать; It
requires... to do (smth) 6,23 требует-
ся... для того, чтобы сделать
(что-л.).

research [rɪ'se:tʃ] 0 *n* исследование,
исследовательская работа; *v* иссле-
довать.

resist [rɪ'zɪst] 0 *v* препятствовать;
оказывать сопротивление.

resistance [rɪ'zɪstəns] 0 *n* сопротив-
ление.

resistant [rɪ'zɪstənt] 0 *a* стойкий, устой-
чивый.

resource [rɪ'sɔ:s] *n* (обычно *pl*) ресур-
сы, средства.

respect [rɪ'spekt] 5,20 *n* отношение; In
(with) respect to (smth) 5,20 в от-
ношении, что касается, относитель-
но (чего-л.).

respectively [rɪ'spektɪvli] *adv* соотве-
тственно.

response [rɪ'spons] *n* ответ, реакция
(на что-л.).

responsible [rɪs'pɔnsəbl] 6,6 *a* 1. ответственный (за что-л.); 2. обуславливающий, создающий; **be responsible for** (smith) 6,6 обуславливать, вызывать (что-л.); являться причиной (чего-л.).

rest [rest] 5,34 *n* 1. отдых, покой; 2. остаток, осталное (с определенным артиклем); *v* 1. отдыхать; 2. опираться, основываться.

result [rɪ'zʌlt] 0 *n* результат; *v* (in) 1. приводить к (чему-л.); 2. (from) получаться в результате (чего-л.); **resultant** [rɪ'zʌltənt] 0 *a* получающийся в результате.

retain [re'teɪn] *v* удерживать, сохранять.

retract [rɪ'trækt] 0 *v* убирать, втягивать (шасси).

retractable [rɪ'træktəbl] 0 *a* убирающийся.

return [rɪ'tɜ:n] 1,14 *n* возврат, возвращение; *v* возвращать(ся), вернуть(ся), отдавать.

reveal [rɪ'veil] 5,32 *v* обнаруживать, раскрывать, разоблачать, показывать.

revelation [rɪ'vel'eɪʃn] 5,32 *n* открытие, обнаружение.

reverse [rɪ've:s] 0 *a* обратный.

review [rɪ'veju:] *n* обзор.

revival [rɪ'veivl] 4,31 *n* возрождение.

revive [rɪ'veiv] 4,31 *v* возрождать.

revolution [rɪ'velu:ʃn] 0 *n* 1. оборот; 2. вращение.

revoive [rɪ'veiv] 0 *v* вращать(ся).

right [raɪt] 0 *a* 1. прямой; 2. правильный, верный; *n* право.

rise [raɪz] (rose, risen) 0 *v* 1. подниматься; 2. возрастать; **give rise** 1,9 вызывать, создавать (трудности); являться причиной (чего-л.); выдвигать (проблему).

road [rəʊd] 12,4 *n* дорога, путь.

rocket-borne [rə'kɪt'bɔ:n] 11,1 *a* установленный на ракете, бортовой.

room [ru:m] 0 *n* место, пространство.

rotate [rəʊ'teɪt] 0 *v* вращать(ся).

rough [rəʊf] 10,12 *a* 1. грубый, шероховатый; 2. приблизительный, примерный.

roughly [rəʊflɪ] 10,12 *adv* приблизительно, примерно.

round [raʊnd] 0 *n* круг, окружность; *a* круглый, круговой; *adv*, *prep* во-круг, кругом.

rule [ru:l] 11,2 *n* правило, закон; *v* управлять; *as* a rule как правило; **rule out** 11,2 исключать.

run [rʌn] 0 *n* ход; пробег; работа; (*ran, run*) *v* 1. бежать; 2. двигаться; 3. вращаться, работать; 4. простираясь, тянуться; 5. управлять (машиной).

S

safe [seɪf] 0 *a* 1. безопасный; 2. допустимый; надежный.

safety ['sefti] 0 *n* безопасность.

same [seɪm] 0 *a* тот же самый, одинаковый.

sample ['sɑ:mpl] 10,18 *n* образец, проба; *v* брать пробу.

satellite ['sæfələit] *n* спутник.

satisfactory [,sætɪs'fæktərɪ] 2,24 *a* удовлетворительный.

satisfy ['sætɪsfaɪ] 2,24 *v* удовлетворять, соответствовать.

save [seɪv] 4,33 *v* 1. спасать; 2. экономить.

saving ['seɪvɪŋ] 4,33 *v* экономия.

say [seɪ] (said) 0 *v* говорить, сказать; *say 11, d/c* скажем; *so to say 11,22* так сказать; *strange to say 11, d/c* странно, что; *to say nothing 11,11* не говоря (о чем-л.);

scale [skeɪl] 4,40 *n* 1. шкала; 2. масштаб.

scatter ['skætə] *v* разбрасывать; рассеивать(ся).

scene [si:n] 2,28 *n* сцена, место действия.

schedule ['sɛdʒu:l] 7,4 *n* расписание, график, план.

scheme [ski:m] *n* 1. план; 2. схема; 3. система.

science ['saɪəns] 0 *n* наука.

scientific [,saɪəntɪ'fɪk] 0 *a* научный.

scientist [,saɪəntɪst] 0 *n* учений.

scope [skoup] *n* 1. объем, охват; 2. сфера.

screen [skri:n] 2,34 *n* экран.

sea [si:] 0 *n* море.

search [sə:ʃ] 0 *n* поиск; *v* искать.

seat [si:t] 0 *n* место.

second ['sekənd] 0 *a* второй; 9,15 *вторых.*

secondly ['sekəndli] 9,15 *во-вторых.*

section ['sekʃn] 0 *n* 1. раздел, часть; 2. сечение; **cross-section** ·поперечное сечение.

see [si:] (saw, seen) 0 *v* видеть, наблюдать.

seek [si:k] (sought) *v* 1. искать; 2. пытаться.

seem [si:m] 0 *v* казаться; **seem + Inf** по-видимому; **It seems that** 6,23 кажется, что.

seldom ['seldəm] 0 *adv* редко.

select [s'lekt] 0 *v* отбирать, выбирать.

selective [s'lektiv] 0 *a* отбирающий, избирательный.

self [self] (*pl selves*) *n* сам; *pref* соответствует приставке само-, например: self-defence *n* самозащита.

semi- ['semi] 8,1 *pref* соответствует приставке полу-, например: semi-conductor.

semiconductor [,semikən'daiktə] 8,1 *n* полупроводник.

send [send] (*sent*) 0 *v* посыпать; отправлять.

sense [sens] 0 *n* 1. чувство, ощущение; 2. смысл; значение; *in a sense* 11,11 в определенном смысле; *in a general (broad) sense* 11,11 в широком смысле слова.

sensitive ['sensitiv] 0 *a* чувствительный.

separate ['separət] 0 *v* отделять (ся); *a* отдельный, особый.

sequence ['si:kwəns] 7,15 *n* последовательность; порядок, ряд.

series ['siəriəs] 0 *n*, *pl* ряд, серия, *in series* последовательно.

serious ['siəriəs] 0 *a* серьезный.

serve [sə:v] 0 *v* служить.

service ['sə:vis] 0 *n* 1. служба; 2. обслуживание; *be in service* 2,5 служить; действовать; работать; *go into service* 6,27 вступать в действие (эксплуатацию); *in service* применяемый, используемый, который применяется, используется.

set [set] 0 *n* 1. прибор, установка; 2. ряд, серия; 3. набор, комплект.

set [set] (*set*) 0 *v* 1. ставить, помешать; 2. устанавливать; учреждать; *set forth* 12,3 излагать, выдвигать; *set forward* 12,3 выдвигать, продвигать; *set in (into) motion* приводить в движение; *set out* 12,3 излагать.

settle ['setl] 0 *v* решать.

several ['sevrəl] 0 *a* несколько.

severe [s'viər] 0 *a* 1. суровый; 2. резкий, сильный.

shade [seid] 2,20 *n* тень; *v* затенять.

shadow ['fədou] 2,20 *n* тень.

shape [seip] *n* форма; *v* придавать форму.

sharp [ʃa:p] 6,8 *a* 1. острый, заостренный; 2. определенный, отчетливый, резкий.

sharply ['ʃa:pli] 6,8 *adv* 1. остро; 2. определенно, отчетливо, резко.

shield [ʃi:ld] 9,8 *n* щит, защита; экран; *v* защищать, заслонять; экранировать.

shielded ['ʃi:ldid] 9,8 *a* защищенный; экранированный.

shielding ['ʃi:ldiŋ] 9,8 *n* экранирование; защита

shift ['ʃif] *n* перемещение; сдвиг.

ship [ʃip] 0 *n* 1. корабль, судно; 2. салют.

short [ʃɔ:t] 0 *a* короткий, краткий; *in short* 9,27 вкратце, коротко говоря.

show [ʃou] *n* выставка; (*showed, shown*) 0 *v* 1. показывать, демонстрировать; 2. доказывать.

shut [ʃut] (*shut*) 0 *v* закрывать (ся); *shut down* 9,19 выключать, останавливать (двигатель).

side [saɪd] 0 *n* сторона; *a* боковой.

sight [saɪt] 2,18 *n* 1. зрение; 2. взгляд; 3. поле зрения.

sign [saɪn] 0 *n* 1. знак; 2. признак; *v* помечать, ставить знак, маркировать.

significance [sig'nifɪkəns] 4,28 *n* значение, важность.

significant [sig'nifɪkənt] 4,28 *a* значительный, важный.

signify ['signifai] 4,28 *v* 1. означать, служить признаком; 2. иметь значение.

silence ['saɪləns] 0 *n* молчание, тишина.

similar ['sɪmɪlə] 0 *a* подобный, сходный, одинаковый.

similarity ['sɪmɪ'lærɪti] 0 *n* подобие, сходство.

similarly ['sɪmɪləri] 9,4 точно так же, аналогичным образом.

simple ['simpl] 0 *a* простой.

simplicity ['simpl'plisiti] 0 *n* простота.

simplify ['simplifai] 0 *v* упрощать.

simply [simpli] 0 *adv* просто; *more simply* 11,13 проще говоря.

simulate ['simjuleit] *v* воспроизводить, моделировать.

simultaneous [,siməl'teɪnɪəs] *a* одновременный.

since [sins] 0 *prep* со временем, с; *cj* 1. с тех пор, как; 2. так как; *adv* с тех пор; *ever since* с тех пор.

single ['sɪŋgl] 0 *a* 1. одни, единственный; 2. единственный.

sit [sɪt] (*sat*) 0 *v* 1. сидеть; 2. быть расположенным.

site [saɪt] *n* местоположение.

situation [,sɪtju'eʃn] 0 *n* 1. местоположение; 2. положение, состояние.

size [saɪz] 0 *n* размер, величина.

skill [skil] 7,9 *n* умение, мастерство, квалификация.

skilled [skɪld] 7,9 *a* квалифицированный.

sky [skai] *n* небо.
slight [slait] *7,3* *a* легкий, слабый, не-значительный.
slow [slou] *0* *a* медленный; **slow down** *u* замедлять.
small [smɔ:l] *0* *a* маленький.
smooth [smu:ð] *2,12* *a* плавный, гладкий.
so [sou] *4,34* *adv* *1.* так, таким образом; *2.* настолько (*усилиительное слово*); *cf* *1.* таким образом, поэтому; *2.* итак, поэтому; *7,34* *3.* также, то же относится и к, аналогичным образом (*перед глаголом*); *and so forth* *4,34* и т. д.; *and so on* *4,34* и т. д.; *or so* *4,34* или около этого; *so as to* *4,34* для того, чтобы; так, чтобы; *so far* *4,34* до сих пор, пока; *so far as* *4,34* поскольку, настолько; *so long as* *3,19* до тех пор, пока; поскольку; *so that* *4,34* так что; таким образом, чтобы; так, чтобы; с тем, чтобы; *so to say* *11,22* так сказать; *so to speak* *11,22* так сказать.
solar ['soulə] *11,5* *a* солнечный.
solid ['sɔlid] *0* *n* твердое тело; *a* *1.* твердый; *2.* основательный, веский.
solution [sə'lju:ʃn] *0* *n* *1.* решение; *2.* раствор.
solve [sɔlv] *0* *v* *1.* решать, разрешать (проблему); *2.* растворять.
some [sɔm] *0* *prp* *1.* какой-нибудь (+существительное в ед. числе); *2.* несколько (+существительное во мн. числе); *3.* некоторое количество, немного (+существительное типа: *water*); *4.* часть (+of+существительное в ед. числе); *adv* около, приблизительно (*перед числительным*).
someone ['sʌmwa:n] *0* *prp* кто-нибудь.
something ['sʌmθiŋ] *10,24* *n* нечто, что-то; **something like** *10,24* приблизительно, около (*перед числом*).
sometimes ['sʌmtaɪmz] *0* *adv* иногда.
somewhat ['sʌmwɔ:t] *10,24* *adv* не-сколько, отчасти, до некоторой степени.
sonic ['sɔnik] *a* звуковой.
soon [su:n] *0* *adv* скоро, вскоре; *as soon as* как только.
sort [sɔ:t] *1,3* *n* вид, род, сорт; *a sort of* нечто вроде, своего рода.
sound [saund] *0* *n* звук; *u* звучать; *a* *1.* здоровый, крепкий; *2.* звуковой; *3.* обоснованный, логичный.
source [sɔ:s] *0* *n* источник.
space [speis] *0* *n* *1.* пространство; *2.* расстояние; *3.* космическое пространство; *u* располагать (с интервалами).
spaceship ['speisʃip] *n* космический корабль.
spark [spa:k] *10,16* *n* искра; *u* искриться, зажигаться искрой.
sparkling ['spa:klin] *10,16* искрение, разряды искр.
speak [spi:k] (*spoke, spoken*) *0* *v* говорить; *so to speak* *11,22* так сказать; *generally speaking* *11,11* вообще говоря, вообще; *strictly speaking* *11,11* строго говоря.
specific [spi'sifik] *4,9* *a* *1.* особый; *2.* удельный; *to be specific* *11,13* говоря точнее.
specifically [spi'sifikəli] *adv* в особенности; в частности; *more specifically* *11,13* точнее, говоря точнее.
specification [speſi'fikæʃn] *4,9* *n* *1.* спецификация; *2.* техническое условие, инструкция, указание.
specify ['speſi'fai] *4,9* *u* точно определять, устанавливать.
speculate ['spekju:leit] *11,29* *u* размышлять, думать, делать предположение, строить гипотезы.
speculation [spekju'leʃn] *11,29* *n* предположение, гипотеза, догадка.
speed [spi:d] *0* *n* скорость.
spend [spend] (*spent*) *0* *v* тратить, расходовать.
sphere [sfɪə] *12,17* *n* сфера, круг, поле деятельности.
spite [spait] (*употребляется в выражении: in spite of*) *prp* *3,24* несмотря на.
splendid ['splendid] *12,14* *a* прекрасный, отличный, великолепный.
split [split] (*split*) *0* *v* расщеплять(ся), раскалывать(ся).
spot [spot] *11,9* *n* пятно.
spread [spred] (*spread*) *0* *v* распространять(ся), простираясь; *n* распространение; размах.
square [skwær] *0* *n* квадрат; *a* квадратный.
stability [stə'biliti] *0* *n* устойчивость, стабильность.
stable ['steibl] *0* *a* устойчивый, устанавливающийся.
stage [steidʒ] *0* *n* *1.* стадия, период; *2.* ступень (ракеты).
stand [stænd] (*stood*) *0* *v* *1.* стоять; *2.* выдерживать.
standpoint ['stændpɔɪnt] *2,25* *n* точка зрения.
star [stɑ:] *5,1* *n* звезда.

start [stɑ:t] 0 *п начало; в начинать (ся).*

state [steɪt] 0 *п 1. состояние; положение; 2. государство; в 1. устанавливать, формулировать; 2. заявлять; state of art (state-of-the-art) 7,33 уровень знаний; уровень технического развития.*

statement ['steɪtmənt] 0 *п 1. заявление; утверждение; 2. формулировка.*

stay [steɪ] *в 1. оставаться, пребывать.*

steady ['stedi] 0 *а 1. устойчивый, устанавливающийся; 2. постоянный, неизменный.*

steam [stɪ:m] 0 *п пар.*

stellar ['stelə] 11,15 *а звездный.*

step [step] 0 *п 1. шаг; 2. ступень, стадия; step by step постепенно; step-rocket многоступенчатая ракета.*

still [stɪl] *а спокойный, неподвижный; 9, d/c 1. все еще, до сих пор; 2. однако, тем не менее.*

stop [stɒp] 0 *в останавливать(ся).*

storage ['stɔ:rɪdʒ] 7,21 *п накопление, хранение.*

store [stɔ:] 7,21 *п запас; в запасать, накапливать, хранить.*

straight [streɪt] 6,19 *а прямой.*

strange [streɪndʒ] 0 *а 1. странный; 2. незнакомый, неизвестный; strange enough 11, d/c удивительно, что; strange to say странно, что.*

stream [stri:m] 0 *п поток, струя, течение.*

streamlined ['stri:mlaɪnd] 0 *а обтекаемый.*

strength [strepθ] 0 *п 1. сила; 2. прочность, крепость.*

strengthen ['strepθen] 0 *в усиливать (ся).*

stress [stres] *п 1. напряжение; 2. значение; в подчеркивать, придавать особое значение.*

strike [straɪk] (*struck*) 0 *в ударять (ся).*

strong [strɒŋ] 0 *а 1. сильный; 2. прочный, крепкий.*

structure ['strʌktʃə] *п 1. структура, устройство; 2. конструкция.*

student ['stju:dənt] 0 *п 1. студент; изучающий (что-л.); 2. исследователь.*

study ['stʌdi] 0 *п 1. изучение, исследование; 2. наука; ве under study 2,5 изучаться, находиться в стадии изучения; в 1. изучать; 2. учиться, заниматься.*

sub- [sʌb] *pref соответствует приставке под-, недо-, полу-, до-, например: subsonic дозвуковой.*

subject ['sʌbdʒɪkt] 0 *п тема, вопрос, предмет; 7,26 в подверженный, склонный (к чему-л.); be subject (to smth) подвергаться (чему-л.); подчиняться.*

subject [səb'dʒekt] 7,26 *в подвергать (действию чего-л.); be subjected подвергаться действию (чего-л.); испытывать действие (чего-л.).*

subject-matter ['sʌbdʒɪkt,ma:tə] *п сущность, содержание; предмет.*

subsequent ['sʌb'skwa:nt] 7,15 *а последующий.*

subsequently ['sʌb'skwa:ntli] 7,11 *adv впоследствии, потом, позже.*

subsonic [səb'sɔnɪk] 0 *а дозвуковой (о скорости).*

substance ['sʌb'stəns] 0 *п 1. вещество; 2. сущность, содержание.*

substantial [səb'stænʃl] 0 *а существенный, важный.*

substantially [səb'stænpʃəli] 0 *adv по существу, в основном.*

succeed [sək'si:d] 3,8 *в 1. следовать (за чем-л.); происходить после (чего-л.); 2. удаваться; иметь успех (перед in+ing).*

succeeding [sək'si:dɪŋ] 2,26 *а последующий, следующий.*

success [sək'ses] 3,8 *п успех, удача.*

successful [sək'sesfʊl] 0 *а успешный, удачный.*

succession [sək'seʃn] 2,26 *п 1. последовательность; 2. непрерывный ряд; in succession 2,26 последовательно.*

such [sʌtʃ] 0 *а такой; such as такой как; как, например.*

sudden ['sʌdn] *а внезапный, неожиданный.*

suffer ['sʌfə] 4,27 *в 1. испытывать, претерпевать; 2. страдать.*

sufficient [sə'fɪʃənt] 0 *а достаточный.*

suggest [sə'dʒest] 1,12 *в 1. предлагать; 2. предполагать, высказывать предположение; 3. наводить на мысль, давать основание предполагать, подсказывать.*

suggestion [sə'dʒestʃn] 0 *1,12 1. предложение; 2. предположение.*

suit [sju:t] 0 *в подходит, соответствовать, годиться.*

suitable ['sju:təbl] 0 *а подходящий, соответствующий.*

sum [sʌm] 12,13 *п сумма, количество; in sum 9,30 итак; суммируя, можно сказать, что; to sum up итак; суммируя, можно сказать, что.*

summarize ['sʌmtəraɪz] *в суммиро-*

вать; **to summarize** 9,30 итак; суммируя, можно сказать, что.

summary ['sʌməri] 12,13 *n* краткое изложение, аннотация; **in summary** 9,30 итак; суммируя, можно сказать, что.

sun [sʌn] 0 *n* солнце.

super- [sju:pə] *pref* соответствует приставке **сверх-**, например: **supersonic** *a* сверхзвуковой.

superior [sju:p'riərɪ] 12,11 *a* лучший, высший, высшего качества; **be superior** превосходить.

superiority [sju:p'riərɪ't̩ɪt̩ɪ] 12,11 *n* превосходство.

supersonic [sju:p'əsɔnɪk] *a* сверхзвуковой (*о скорости*).

supply [sə'plaɪ] 0 *n* 1. подача, питание; снабжение; 2. источник; *v* давать, снабжать, давать, обеспечивать.

support [sə'pɔ:t] 0 *n* поддержка, опора; *v* поддерживать.

suppose [sə'pouz] 3,5 *v* предполагать, полагать; *cj* если, исходя из предположения, что; **it is (commonly) supposed that** 11, *ð/c* (обычно) предполагают, что.

supposing [sə'pouzɪŋ] 3,5 *cj* если; предположим; исходя из предположения, что.

supposition [sə'pəzɪʃn] 3,5 *n* предположение.

supreme [sju:p'reɪm] 0 *a* наиболее важный.

sure [ʃuə] 9,3 *a* 1. верный, несомненный; 2. уверенный; 3. конечно, несомненно (*в конструкции типа: is likely to develop*); **to be sure** 9,3 конечно, несомненно; **make sure** 6, *ð/c* удостовериться.

surely ['ʃuəli] *adv* конечно, несомненно.

surface ['sə:fɪs] 0 *n* поверхность; плоскость.

surprise [sə'prɪz] 8,7 *n* 1. удивление; 2. неожиданность.

surprising [sə'prɪzɪŋ] 8,7 *a* удивительный, неожиданный; **it is hardly surprising that** 8,7 едва ли вызывает удивление тот факт, что; **it is not surprising that** 8,7 не удивительно, что.

surprisingly [sə'prɪzɪŋli] 8,7 *к* нашему удивлению; неожиданным образом, как ни странно.

surround [sə'raʊnd] 5,21 *v* окружать.

surroundings [sə'raʊndɪŋz] 5,21 *n pl* окружающие условия, окружающая среда.

sweep [swi:p] 0 *n* 1. размах, охват; 2. развертка.

swift [swifɪ] 12,2 *a* быстрый.

switch [swɪtʃ] 0 *n* переключатель; *v* переключать.

symposium [sɪm'pouzjəm] *n* 1. симпозиум, конференция; 2. сборник научных трудов.

Т

table ['teɪbl] 0 *n* 1. стол; 2. таблица.

take [teɪk] (*took, taken*) 0 *v* 1. брать; 2. принимать, считать; **take account of** (smth) учитывать (что-л.); **take advantage of** (smth) 2,17 использовать (что-л.); **take care** заботиться, следить, обращать внимание, принимать меры; **take into account** принимать во внимание (расчет); **take into consideration** принимать во внимание, учитывать; **take off** взлетать; **take part** принимать участие; **take place** иметь место; **It takes (to do smth)** 6,23 требуется (для того, чтобы сделать что-то); **it takes smb (smth)... to do smth** 6,23 кому-либо (чему-либо) требуется.. для того, чтобы сделать (что-л.).

target ['ta:gɪt] *n* цель, мишень.

task [ta:sk] 0 *n* задача; задание.

technique [tek'nɪk] 4,37 *n* 1. техника; 2. метод, способ.

tell [tel] (*told*) 0 *v* рассказывать, сообщать; **to tell the truth** 11,8 по правде говоря.

tend [tend] 4,19 *v* стремиться (что-л. сделать); иметь тенденцию (к чему-л.).

tendency ['tendənsɪ] 4,19 *n* стремление, склонность, тенденция.

term [tə:m] 0 *n* 1. термин; выражение; 2. срок; *v* называть, выражать; **in terms of** 1,8 в единницах, в величинах; 2. на основании, с точки зрения.

terminal ['t̩ə:minɪl] 0 *n* вывод, зажим, клемма; *a* конечный.

terrestrial ['t̩ɪ'restriəl] *a* земной.

test [test] 0 *n* испытание, проверка; **be under test** 2,5 испытываться, находиться в стадии испытания; *v* испытывать, проверять.

than [ðæn] 0 *cj* чем (при сравнении).

thank [θæŋk] 0 *v* благодарить; **thanks to** 0 *prp* благодаря (чему-л.).

that [ðæt] 0 *prn* 1. тот, та, то (известный); 2. это; 3. (заменяет предыдущее существительное; при

переводе это существительное обычно восстанавливается); that is то есть; that is why вот почему; 0 сj 1. то, что (в начале предложения); 2. что (после глагола-сказуемого); 3. который (после существительного); now that теперь, когда. then [ðen] 0 *adv* тогда, в этом случае; 9,15 1. далее, затем; 2. следовательно.

there [ðeə] 0 1. там; 2. (перед глаголом-сказуемым не переводится — формальное подлежащее).

thereafter [ðeə'ðə:ftə] 10,25 после этого, затем.

thereby [ðeə'ðbɪ] 10,25 посредством этого.

therefore ['ðeəfɔ:] 0 поэтому.

therefrom [ðeə'frəm] 10,25 оттуда.

therein [ðeəð'ɪn] 10,25 в этом, здесь, там.

therewith [ðeə'wɪð] 10,25 с этим, посредством этого.

these [ði:z] 0 *prn* 1. эти; 2. они (заменяет упомянутое выше существительное).

thick [θɪk] 0 *a* плотный; густой.

thin [θɪn] 0 *a* 1. тонкий; 2. разреженный (об атмосфере).

thing [θɪŋ] 0 *n* 1. вещь, предмет; 2. дело, факт.

think [θɪŋk] (*thought*) 0 *v* 1. думать; 2. считать, полагать.

thoroughly ['θɔ:gli] *adv* тщательно, основательно.

those [ðoʊz] 0 *prn* 1. те (иногда эти); 2. (заменяет существительное во мн. числе; при переводе это существительное обычно восстанавливается).

though [ðoʊ] 0 *cj* хотя; as though 8,0/с как если бы.

thought [θɔ:t] 0 *n* мысль.

through [θru:] 0 *prp* 1. через; 2. посредством; путем.

throughout [θru:'aut] 5,31 *prp* через, по всему; на всем протяжении; *adv* повсюду; во всех отношениях; от начала до конца.

throw [θru:] (*threw, thrown*) 3,22 *v* бросать, метать.

thrust [θrəst] 0 *n* тяга.

thus [ðəs] 0 итак, таким образом.

till [tɪl] 0 *prp* до; *cj* пока; до тех пор пока.

time [taɪm] 0 *n* 1. время; 2. период; 3. раз; at the time в то время, когда; at times 8,27 иногда; for the first time впервые, в первый раз;

for the time being 8,27 в данное время; in time 8,27 вовремя.

tip [tip] 4,16 *n* конец, кончик.

to [tu] 0 *prp* 1. к, в (куда?); 2. соответствует дательному падежу.

today [ta'deɪ] 0 *adv* 1. сегодня; 2. в настоящее время.

together [tə'geðə] 0 *adv* вместе; together with (smth) 8,35 наряду (с чем-л.).

ton [tən] 3,30 *n* тонна.

too [tu] 0 *adv* 1. слишком (перед прилагательным и наречием); 2. также (в конце предложения).

top [tɔp] 0 *n* верх, вершина; а наивысший, максимальный.

total ['tɔ:təl] 6,22 *a* общий; полный.

totally ['tɔ:təli] 6,22 *adv* полностью, совершенно.

toward(s) [tə'wɔ:d(z)] 0 *prp* по направлению (к чему-л.).

trace [treɪs] 8,22 *n* 1. след; 2. незначительное количество; *v* следить, прослеживать.

track [træk] *n* след; *v* следить, прослеживать.

transfer [træns'fə:] 8,21 *n* перенос, передача; *v* переносить, передавать.

transform [træns'fɔ:m] 0 *v* 1. превращать; 2. преобразовывать (ся), трансформировать.

transmission [trænz'mi:sn] 0 *n* передача.

transmit [trænz'mit] 0 *v* передавать, посыпать.

transmitter [trænz'mɪtə] 0 *n* (радио)-передатчик.

trap [træp] 11,17 *n* ловушка; *v* улавливать.

travel [trævəl] 0 *n* 1. движение; 2. полет; *v* двигаться, перемещаться, распространяться.

treat [tri:t] 0 *v* 1. рассматривать, излагать; 2. обрабатывать.

treatment [tri:t'meñt] 0 *n* 1. рассмотрение, изложение (проблемы); 2. обработка.

tremendous [tri'mendəs] 0 *a* громадный, колоссальный.

trend [trend] 0 *n* 1. направление; 2. тенденция.

trip [trɪp] 0 *n* путешествене; полет.

troops [tru:ps] 3,23 *n pl* войска.

trouble [trʌbl] *n* 1. затруднение; 2. неисправность; авария.

true [tru:] 0 *a* истинный, справедливый; 11,3 *adv* несомненно; It is true 11,3 несомненно; hold true 6,33 быть справедливым, быть действительным.

truly ['tru:li] 0 *adv* по правде говоря.
 truth ['tru:θ] 0 *n* правда, истина; *to tell (to say) the truth* 11,3 по правде говоря.
 try [trai] 0 *v* 1. пробовать, испытывать; 2. пытаться, стараться.
 tube [tju:b] 8,30 *n* 1. труба, трубка; 2. электронная лампа.
 turbulence ['tə:bju:ləns] 11,21 *n* возмущение, турбулентность, завихрение.
 turbulent ['tə:bju:lənt] 11,21 *a* возмущенный, турбулентный, вихревой.
 turn [tə:n] *n* 1. поворот; 2. оборот; 0 *v* вращаться, поворачивать(ся); *turn into* превращать(ся); *turn off* выключать; *turn on* включать; *turn out* 5,35 оказываться; *it turns out* оказывается; *In turn* в свою очередь, по очереди, последовательно.
 twice [twais] 1,21 *adv* вдвое; *twice as much* 1,21 вдвое больше.

U

ultimate ['ʌltɪmɪt] 10,9 1. окончательный, конечный; 2. максимальный, предельный.
 ultimately ['ʌltɪmɪtlɪ] 10,9 *adv* в конце концов, в конечном счете.
 un- [ʌn] *pref* придает слову отрицательное значение, например: *undesirable* нежелательный; *unequal* неравнозначный.
 unaffected [ʌn'fektɪd] 10,14 *a* незатронутый.
 unavoidable [ʌn'vɔɪdəbl] 7,27 *a* неизбежный.
 under ['ʌndə] 0 *prp* 1. под (чем-л.); 2. под действием или под влиянием (чего-л.); 3. при, в (при данных обстоятельствах); 4. ниже, меньше (какой-то величины).
 under- ['ʌndə] *pref* 1. имеет значение «ниже», «под», например: *underground* подземный; 2. придает слову значение недостаточности, неполноты, например: *undervalue* недооценивать.
 underestimate ['ʌndər'estɪmɪt] 5,30 *v* недооценивать.
 undergo [ʌndə'gou] (*underwent, undergone*) 0 *v* претерпевать, подвергаться (чему-л.).
 underlie [ʌndə'lai] (*underlay, underlain*) 0 *v* лежать в основе.
 understand [ʌndə'stænd] (*understood*) 0 *v* понимать.
 undertake [ʌndə'teik] (*undertook, undertaken*) 10,15 *v* предпринимать, производить.

undertaking [ʌndə'teikɪŋ] 10,15 *n* предприятие, задача, дело.
 undoubtedly [ʌn'daʊtɪdli] 1,34 *adv* несомненно, бесспорно.
 unfortunate [ʌnfɔ:tʃnɪt] 4,18 *a* неблагоприятный, неудачный. *it is unfortunate* 4,18 к сожалению.
 unfortunately [ʌnfɔ:tʃnɪtlɪ] 4,18 *adv* к сожалению.
 uniform ['ju:nɪfɔ:m] 1,25 *a* 1. единообразный, однородный; 2. равномерный; 3. постоянный.
 uniformly [ju:nɪfɔ:mlɪ] 1,25 *n* 1. единообразие, единство; 2. однородность; 3. равномерность.
 uniformly [ju:nɪfɔ:mlɪ] 1,25 *adv* 1. единообразно; 2. однородно; 3. равномерно.
 unique [ju:'ni:k] 8,2 *a* единственный в своем роде, своеобразный, уникальный.
 unit ['ju:nɪt] 0 *n* 1. единица; 2. агрегат; установка; блок.
 universal [ju:nɪ've:səl] 1,5 *a* всеобщий; универсальный.
 universe ['ju:nɪvə:s] 1,5 *n* мир, вселенная.
 unless [ʌn'les] 0 *cf* если... не.
 unlike [ʌn'lаik] 2,1 *a* непохожий; *prp* в отличие от.
 unlikely [ʌn'lаikli] 2,1 *a* маловероятный (*в составе сказуемого типа: is unlikely to return*).
 unrecognized ['ʌn'rekəgnɪzɪd] 10,10 *a* неузнанный, неопознанный.
 until [ən'til] 0 *prp* до; *cj* до тех пор пока... не; *not until* 7,22 *prp* только в, только после; *cj* только тогда, когда.
 up [ʌp] *adv* вверх, наверх; *up to* 7,11 вплоть до; *up to date* 8, *ð/c* современный; *up to now* до сих пор.
 upon [ə'pən] 0 *prp* 1. на; 2. после, при (+ географий).
 upper ['ʌpə] 4,20 *a* верхний.
 uppermost ['ʌpəməʊst] 4,20 *a* самый верхний, наивысший.
 upward(s) ['ʌpwəd(z)] 0 *adv* вверх.
 use [ju:s] 0 *n* 1. употребление, применение; 2. польза; *be in use* 2,5 использоваться, применяться; *in use* используемый, который используется; *make use (of smth)* 6,12 использовать, применять (что-л.); *put into use* 6,25 начать применять, использовать; *use is made (of smth)* 6,12 используется (что-л.); *[ju:z]* *v* использовать.
 useful ['ju:zful] 0 *a* полезный.
 useless ['ju:slis] 0 *a* бесполезный.

usual [ju:zueɪl] 0 *a* обычный, обыкновенный.
utilize [ju:tɪlaɪz] 0 *v* использовать.
utmost [ʌtmoust] *a* максимальный.

V

valid [vælɪd] 12,9 *a* правильный, обоснованный, имеющий силу.
validity [væ'lɪdɪtɪ] 12,9 *n* правильность, обоснованность.
valuable [væ'ljuəbl] 0 *a* ценный.
value [vælju:] 0 *n* 1. значение; ценность; 2. числовое значение, величина; *v* ценить.
vapo(u)r [veɪpər] 5,9 *n* пар, пары; газообразное состояние.
vapo(u)rize [veɪpəraɪz] 5,9 *v* превращать в пар, приводить в газообразное состояние.
variable [veərɪəbl] 2,15 *n* переменная (величина); *a* переменный.
variety [və'rætɪ] 2,15 *n* 1. множество, много, многообразие; 2. ряд,несколько; 3. разновидность, тип.
various [və'rɪəs] 0 *a* 1. различный; 2. разнообразный.
vary [væərɪ] 0 *v* колебаться; изменяться.
vast [va:st] 0 *a* огромный; обширный.
vehicle [vi:ɪkl] 0 *n* 1. летательный аппарат (*ракета, самолет, космический корабль*); 2. любое средство транспорта.
velocity [vi'ləsɪtɪ] 0 *n* скорость.
versus [və:səs] *prp* 1. против; 2. в сравнении с; 3. в зависимости от.
very ['verɪ] 0 *adv* очень; *the very* тот самый.
via [vaiə] *prp* через; путем.
vibrate [va'breɪt] 0 *v* колебаться.
vice versa ['vaɪsə'və:sə] *adv* наоборот.
vicinity [vi'sɪnɪtɪ] *n* близость.
view [vju:] 2,25 *n* 1. вид, обзор; 2. взгляд, мнение; *in view of* 2,25 в виду, принимая во внимание; *point of view* 2,25 точка зрения; *view point (viewpoint)* 2,25 точка зрения; *with a view to* 2,25 с целью, с намерением; *v* рассматривать, обозревать.
violent ['vaɪələnt] *a* 10,3 сильный, бурный.
violently ['vaɪələntɪ] 10,3 *adv* с большой силой, бурно.
virtual [və:tjuəl] 7,20 *a* действительный, действующий, фактический.
virtually ['və:tjuəli] 7,20 *adv* фактически, в сущности, буквально.

virtue [və:tju:] 7,20 *n* 1. достоинство, преимущество; 2. сила; *by (in)* virtue of 7,20 в силу (*чего-л.*); благодаря (*чему-л.*).
visible ['vɪzɪbl] 2,11 *a* видимый.
vision [vɪzɪn] 2,11 *n* 1. зрение; 2. обзор.
volume ['vɔlju:m] 9,14 *n* объем; емкость.

W

walk [wɔ:k] 0 *v* ходить.
wall [wɔ:l] 0 *n* стена.
want [wɔ:nt] 0 *v* хотеть, желать.
war [wɔ:] 0 *n* война.
warfare [wɔ:feə] 3,1 *n* война, методы ведения войны.
warm [wɔ:m] 0 *a* теплый; *v* нагревать.
warn [wɔ:n] 9,7 *v* предупредить, предстегать.
waste [weɪst] *n* 1. потеря, убыток; 2. отходы.
watch [wɔ:tʃ] 0 *v* наблюдать, следить за (*чем-л.*).
water ['wɔ:tə] 0 *n* вода.
wave [weɪv] 0 *n* волна.
way [wei] 0 *n* 1. путь; 2. способ; метод; *be under way* 1,28 осуществляться; *In a similar way* 1,28 таким же путем, таким же способом (методом, образом); *in this way* 1,28 таким путем (методом, способом); *put it in another way* 11,13 иначе говоря.
weak [wi:k] *a* слабый.
weapon ['wepən] 0 *n* оружие.
week [wi:k] 0 *n* неделя.
weigh [wei] 0 *v* 1. взвешивать; 2. весять.
weight [wei:t] 0 *n* 1. вес; 2. груз.
well [wel] 0 *adv* 1. хорошо; 2. значительно; *as well* также; *as well as* а также.
what [wɔ:t] 0 *prn, prp* 1. какой (*перед существительным*); 2. что (*обычно перед глаголом*); 3. то, что.
whatever [wɔ:t'evə] что бы ни; какой бы ни; независимо от.
when [wen] 0 *cj* 1. когда; 2. при (*перед причастием или существительным с предлогом*).
whenever [wen'evə] *cj* всякий раз, когда; когда бы ни.
where [weə] 0 *cj* 1. где; 2. куда.
whereas [weər'əz] 10,31 *cj* тогда как, в то время, как.
whereby [weə'bai] 11,12 *adv* 1. благодаря которому; посредством которого, при помощи которого (*когда*

относится к существительчому); 2. благодаря чему, посредством чего, при помошн чего (когда относится ко всему предложению).
wherever [weər'evə] *adv* где бы ни; куда бы ни.
whether ['weðə] 0 *cj* ли (ставится после глагола).
which [wɪtʃ] 0 *prn, cj* 1. который; 2. что.
while [wail] 9,28 *cj* 1. в то время как; тогда как; 2. хотя.
whole [houl] 0 *a* целый, весь; *on the whole* 8,16 в целом.
why [wai] 0 *cj* почему.
wide [waɪd] 0 *a* 1. широкий; 2. большой, обширный.
width [wɪdθ] 0 *n* ширина.
wlnd [wind] 0 *n* ветер.
wing [wɪŋ] 0 *n* крыло.
wlre ['waɪə] 0 *n* проволока; провод.
wish [wɪʃ] 0 *v* желать, хотеть.
with [wɪð] 0 *prp* 1. с, вместе (с кем-л., с чем-л.); 2. в зависимости (от чего-л.); 3. в случае, при; 4. выражает отношение, передаваемое творительным падежом.
within [wɪ'ðin] 8,13 *prp, adv* в предлах, внутри.

without [wi'ðaut] 0 *prp* 1. без; 2. не (перед герундией или отглагольным существительным).
wltness ['wɪtnɪs] 0 *v* видеть; быть свидетелем; свидетельствовать.
word [wɔ:d] 0 *n* слово; 9,27 *in a few words* вкратце, коротко говоря; *In other words* 11,13 другими словами; *in plain words* 11,13 по правде говоря.
work [wə:k] 0 *n* 1. работа; 2. действие; *v* 1. работать; 2. приводить в действие (машину).
world [wə:ld] 0 *n* мир, вселенная.
worth [wə:θ] 0 *a* стоящий; *be worth (while)* стонть; иметь смысл.
wrong [rɔ:g] *a* неправильный, ошибочный.

Y

yet [jet] 9, *ð/c* *adv* 1. еще, все еще; 2. однако; *as yet* все еще; до сих пор; пока.
yield [jɪ:ld] 5,11 *v* давать, производить.

Z

zero ['zɪərəʊ] 8,15 *n* нуль.

СОДЕРЖАНИЕ СПРАВОЧНИКА С УКАЗАНИЕМ УПРАЖНЕНИЙ

	Стр.
Инфинитив и инфинитивные конструкции	
Инфинитив в функции подлежащего	352
Урок 1, упр. 4	
Инфинитив в функции обстоятельства цели	353
Урок 1, упр. 4	
Инфинитив в функции обстоятельства следствия	—
Урок 1, упр. 9	
Инфинитив в функции обстоятельства последующего действия	354
Урок 1, упр. 8	
Инфинитив в функции определения	—
Урок 1, упр. 5	
Инфинитив как часть сказуемого	355
Урок 1, упр. 1, 2, 3; урок 2, упр. 15А; урок 4, упр. 9А	
Инфинитив как часть сложного дополнения	358
Урок 1, упр. 6	
Инфинитивная конструкция с предлогом <i>for</i>	359
Урок 1, упр. 7; урок 2, упр. 15Б; урок 3, упр. 11Б	
Сводное упражнение на инфинитив	32
Урок 1, упр. 10	
Причастие и причастные обороты	
Причастие в функции определения и обстоятельства	360
Урок 2, упр. 1	
Сложные формы причастий	362
Урок 2, упр. 2	
Обстоятельственные причастные обороты с союзами <i>и</i> , <i>но</i>	—
Урок 2, упр. 3; урок 10, упр. 6В	
Обособленный причастный оборот	—
Урок 2, упр. 6	
Обособленный причастный оборот с предлогом <i>with</i>	363
Урок 2, упр. 7	
Определительная конструкция «причастие+инфинитив»	364
Урок 2, упр. 4; урок 3, упр. 11А; урок 10, упр. 6Б	
Причастные обороты с союзом <i>as</i>	—
Урок 2, упр. 8	
Герундий	
Формы герундия	365
Признаки герундия	—
Урок 3, упр. 1, 2, 6; урок 5, упр. 11	
Герундий в функции подлежащего	366
Урок 3, упр. 6	

	Стр.
Герундий в функции левого определения	366
Урок 3, упр. 3, 4	
Герундий в функции обстоятельства	367
Урок 3, упр. 5	
Способы перевода герундия	—
Урок 3, упр. 1—9	
Сослагательное наклонение	
Формы сослагательного наклонения	368
Урок 5, упр. 3	
Употребление сослагательного наклонения	369
Урок 5, упр. 1, 2; урок 6, упр. 11Б	
Способы перевода сослагательного наклонения	370
Урок 5, упр. 1—7	
Употребление модальных глаголов для выражения сослагательного наклонения	371
Урок 5, упр. 4, 5, 6; урок 7, упр. 9	
Бессоюзное условное предложение с глаголом в сослагательном наклонении	—
Урок 5, упр. 8	
Употребление и перевод глагола should	—
Урок 5, упр. 6	
Употребление и перевод глагола would	—
Урок 5, упр. 7	
Несвободные словосочетания	
Несвободные словосочетания с глаголом	372
Словосочетания «глагол+существительное с предлогом»	373
Словосочетания «глагол to be +существительное с предлогом»	—
Урок 6, упр. 1	
Словосочетания «глагол to bring (to put , to set)+существительное с предлогом»	—
Урок 6, упр. 3	
Словосочетания «глагол to come (to go)+существительное с предлогом»	374
Урок 6, упр. 2	
Словосочетания «глагол to keep (to bear) +существительное mind »	—
Урок 6, упр. 7	
Словосочетания «глагол to take +существительное»	—
Урок 6, упр. 4	
Словосочетания «глагол+существительное без предлога»	—
Урок 6, упр. 5, 6	
Словосочетания «глагол+прилагательное»	375
Урок 6, упр. 8	
Особые обороты с глаголом	376
Урок 6, упр. 9	
Несвободные словосочетания с существительным и другими частями речи	—
Словосочетания со словом date	—
Урок 8, упр. 8	
Словосочетания со словом part	—
Урок 8, упр. 8	
Словосочетания со словом time	—
Урок 8, упр. 8	
Словосочетания со словом as	—
Урок 8, упр. 1; урок 12, упр. 12В	
Словосочетания со словом so	377
Урок 8, упр. 2; урок 12, упр. 12В	

	Стр.
Словосочетания, выполняющие функцию предлогов	377
Урок 8, упр. 3—7; урок 12, упр. 12Б	
Оборот <i>This is the case</i>	379
Урок 7, упр. 16; урок 8, упр. 16	
Оборот <i>so far as (smth) is concerned</i>	—
Урок 7, упр. 18; урок 8, упр. 16	
Слова и словосочетания, служащие для связи отдельных частей высказывания	—
Средства связи, указывающие на последовательность мыслей и действий	—
Урок 9, упр. 8	
Средства связи, выражающие присоединение к высказыванию	380
Урок 9, упр. 3—5	
Средства связи, выражающие противопоставление	—
Урок 9, упр. 1, 6, 7; урок 10, упр. 6А	
Средства связи, показывающие, что высказывание является следствием, суммированием предыдущего	—
Урок 9, упр. 2, 4	
Слова, словосочетания и обороты, служащие для выражения отношения автора к высказываемой мысли и для ее уточнения	382
Слова, словосочетания и обороты, выражающие уверенность	—
Урок 11, упр. 1, 8	
Слова, словосочетания и обороты, выражающие вероятность	383
Урок 11, упр. 2, 8	
Слова, словосочетания и обороты, дающие оценку высказыванию с точки зрения его желательности или нежелательности	—
Урок 11, упр. 3, 8	
Слова, словосочетания и обороты, служащие для выделения, ограничения и уточнения отдельных частей высказывания	384
Урок 11, упр. 4, 5, 8, 10	
Слова и словосочетания, вводящие дополнительные пояснения к высказываемой мысли	—
Урок 11, упр. 6, 8	
Обороты, выражающие ссылку на общепринятность мысли или действия	385
Урок 11, упр. 7, 8	

Группа существительного

Группа существительного с левыми определениями	—
Нахождение основного слова группы	—
Урок 4, упр. 5	
Последовательность перевода слов в группе существительного	—
Урок 4, упр. 4	
Группа существительного с правыми определениями	389
Прилагательное в функции правого определения	—
Урок 4, упр. 1	
Сочетания типа <i>under consideration</i> в функции правого определения	—
Урок 4, упр. 2, 3	
Употребление приложения в функции правого определения	—
Урок 4, упр. 6, 7	

Инверсия

Типы инверсии	390
Инверсия типа <i>Shown on the photo is</i>	—
Урок 7, упр. 1, 6, 7; урок 8, упр. 12В; урок 9, упр. 10Б; урок 12, упр. 4А	
Инверсия типа <i>Important as this problem</i>	392
Урок 7, упр. 5	

	Стр.
Инверсия типа Never before have we seen...	391
Урок 7, упр. 2, 8; урок 12, упр. 4A	
Инверсия в предложениях с союзами neither, nor	392
Урок 7, упр. 3	
Инверсия в предложениях с союзом so	—
Урок 7, упр. 4	
Выделение сказуемого посредством глагола to do	—
Урок 8, упр. 10	
Эллиптические конструкции	
Основные виды эллиптических конструкций	393
Эллиптические конструкции с союзами although, though, if, once, when, while	—
Урок 10, упр. 1, 4; урок 11, упр. ii	
Эллиптические конструкции с уступительными союзами whatever, no matter how, however	394
Урок 10, упр. 2, 4	
Эллиптическая конструкция If any	—
Урок 10, упр. 3, 4; урок 12, упр. 4B	
Некоторые конструкции с глаголом	
Двойное управление	395
Конструкции с двойным управлением	—
Урок 11, упр. 9	
Конструкции с глаголом to have	
Конструкция «to have + существительное + причастие II»	—
Урок 12, упр. 1	
Конструкция «to have + существительное + инфинитив»	396
Урок 12, упр. 2	
Различные значения глагола to have	—
Урок 12, упр. 4B	
Указания по выбору значений слов	
Выбор значения существительного	—
Урок 4, упр. 11; урок 5, упр. 12; урок 8, упр. 13	
Выбор значения прилагательного	—
Урок 4, упр. 10	
Выбор значения глагола-сказуемого в действительном залоге	—
Урок 1, упр. 16; урок 2, упр. 16; урок 3, упр. 12, 13	
Выбор значения глагола-сказуемого в страдательном залоге	398
Урок 2, упр. 16	
Выбор значения причастия I, причастия II и герундия	—
Выбор значения наречия	—
Урок 2, упр. 17, 18; урок 4, упр. 12	

СПИСОК НЕКОТОРЫХ ЛЕКСИЧЕСКИХ ЕДИНИЦ И УПРАЖНЕНИЙ ДЛЯ ИХ ЗАКРЕПЛЕНИЯ

(черная цифра обозначает номер урока, светлая — номер упражнения)

According to (in accordance with) 8, 7; account и словосочетания с ним 2, 26; 6, 4, 5, 6; 7, 20; 8, 4; 10, 16; 12, 12B; account for 8, 14; 10, 16; account is taken (Is given) 6, 6; 7, 20; 10, 16; add и словосочетания с ним 7, 13; 12, 12B; adequate (inadequate) 1, 21; advantage is taken 2, 26; 6, 6; affect 10, 10; 11, 22A; after 3, 10; again 9, 5; against 12, 11; agree 11, 17; all и словосочетания с ним 3, 16; 5, 24B; along with 7, 14; 8, 6; 12, 12B; also 9, 5; apart from 8, 5; apparent (apparently) 10, 13; 11, 2; appreciate и его производные 4, 15; 6, 15A; 12, 12A; arise (raise, rise) 11, 14; arrive 10, 9; art и его производные 7, 19; as и словосочетания с ним 2, 8, 14; 3, 17; 6, 14; 7, 18; 8, 7, 16; 9, 7; 12, 12B; as (so) far as ... is concerned 7, 18; 8, 16; 12, 12B; aside from 8, 5; 12, 12B; assembly 9, 12; associate 6, 15A; associated 2, 19; assume и его производные 1, 17; 4, 21; 6, 15B; 11, 1; attribute 11, 22A; available и его производные 4, 17; average и его производные 8, 9, 15; avoid 11, 22A; background 5, 18; 9, 16; be (become) aware 3, 14; 5, 24B; 6, 8; 11, 22B; be characteristic of (for) (indicative, typical) 5, 13; be under development 2, 22; 6, 1; be in excess 1, 19; 2, 22; 6, 1; be in existence 2, 22; 6, 1; be familiar 5, 23; 6, 8; 11, 22B; be of importance (Interest, significance, value) 6, 1; be in operation 2, 22; 6, 1; be in a position 6, 1, 11, 22B; be in progress 6, 1; 11, 22B; be referred to (as smth.) 6, 14; 8, 16; 11, 22B; be responsible 6, 8; 11, 22B; be in service 2, 22; 6, 1; be under study 2, 22; 6, 1; be in use 2, 22; 6, 1; be under way 2, 22; 6, 1; bear in mind 6, 7; because, because of 5, 10; 8, 4; 12, 12B; before 3, 10; borne (rocket-borne) 11, 12; both, both... and 1, 15; bring into (action, use) 6, 3; but и словосочетания с ним 5, 16; by 10, 15; by now (by then) 2, 21; 8, 9; capture (trap) 11, 15; care is taken 6, 6; 7, 20; 11, 22B; case (this is the case, as is the case, this is not the case) 7, 16; 8, 16; combined with 8, 6; come into (action, being, play, use) 6, 2; 7, 20; common (in common) 1, 22; 8, 9; as compared with 8, 7; in comparison with 12, 12B; complete (complex, complicated) 2, 32; conclusively 12, 12A; in conjunction with 8, 6; consideration is given 6, 6; 7, 20; constantly 2, 17; continuously 2, 17; 12, 12A; in contrast (to, with) (contrary to, on the contrary) 8, 7; 9, 1; 12, 12B; conventional 1, 22; 5, 24A; correspond 6, 15A; current 4, 19; 5, 24A; date и словосочетания с ним 8, 8; a great (good) deal 8, 9; depend с двумя предложными дополнениями 11, 21; as distinct from 8, 7; domain 4, 21; draw 5, 21; due и словосочетания с ним 3, 20; 8, 4; each other 8, 9; effect 10, 10; effort 12, 10; eliminate 10, 7; emphasis is placed 6, 6; 7, 20; encounter 10, 7; 11, 22A; endeavour 12, 10; enormous 5, 24A; ensure 9, 11; 11, 22A; enter и его производные 4, 15; escape 2, 7; essentially 2, 17; essentials 2, 25; estimate 5, 17; eventually 10, 8; 12, 12A; ever 12, 3; evidence 1, 24; 4, 21; except for 8, 9; 12, 12B; excess и его производные 1, 19; exhibit 6, 15A; expand 3, 19; at the expense of 8, 7; 12, 12B; extend и его производные 7, 11; 11, 4, 22A; facility (facilitate) 3, 21; 6, 15A; fail (failure) 1, 17; 4, 21; 6, 15A; feed 7, 10; feel certain 6, 8; finally 10, 7; fit 6, 12; for 1, 14; 2, 14B; 3, 11B; the former 9, 13; fundamentals 2, 25; gain 1, 17; give (account, consideration, mention) 6, 5, 6; 7,

20, 10, 16; give rise 1, 18; 5, 24Б; go into (particulars, play, service) 6, 2; gradually 2, 17; 12, 12А; hardly 1, 23; 12, 12А; highly 2, 17, 18; hold true 6, 8; 11, 22Б; identify 5, 15; impact 4, 18; 9, 16; impart 10, 7; 11, 22А; inferior 12, 8; inherent (inherently) 4, 13; initiate 11, 16; inner (innermost) 5, 20; instead of 12, 12Б; involve 2, 23; irrespective of 8, 7; 12, 12Б; it appears (follows, happens, requires, turns out, seems) 6, 9; it takes 6, 9; 7, 20; item 4, 18; 9, 16; just 11, 10; keep in mind 6, 7; kind 1, 25; lack 3, 22; 4, 21; the latter 9, 13; lead 4, 16; at least 1, 20; leave 4, 16; at length 8, 9; like и его производные 2, 20; locate 2, 31; long и словосочетания с ним 3, 18; 5, 24Б; 8, 9; 12, 12Б; lunar (moon) 11, 19; make mention (provisions, reference, use) 6, 5, 6; 7, 20; 11, 22Б; make sure 9, 11; 11, 22Б; materially 12, 12А; matter и словосочетания с ним 5, 14; 8, 16; 10, 2; medium 6, 13; mention is made 6, 6; 7, 20; 11, 22Б; nearly 1, 23; 12, 12А; necessarily 1, 23; neither, nor 7, 3, 12; now that 8, 9; number и его производные 12, 9; obvious 5, 24А; occasion и его производные 10, 14; occur 5, 17; 6, 15А, Б; once и словосочетания с ним 7, 17; 8, 9; one another 8, 9; ordinary 1, 22; 5, 24А; originate 11, 16; otherwise 9, 6; 10, 6А; outer (outermost) 5, 20, 24А; outset 4, 21; over 11, 20; owing to 8, 4; 12, 12Б; part и словосочетания с ним 8, 8; partial 2, 32; particular 2, 32; pay attention 6, 5; place emphasis 6, 5, 6; 7, 20; point и его производные 2, 24; present 4, 19; prevent 3, 23; previous (prior) to 8, 7; 12, 12Б; project 3, 21; promise и его производные 4, 15; 11, 22А; propel и его производные 4, 15; provide (provided, provided that, providing) 2, 27, 28, 29; 6, 15А; provision is made 6, 6; pure и его производные 8, 15; put into operation (practice, use) 6, 3; rather 9, 6; 10, 6А; readily 1, 23; 12, 12А; recent 5, 24А; recognize 10, 9; 11, 22А; with (in) reference to 8, 3; reference is made 6, 6; 7, 20; 11, 22Б; in (with) regard to (as regards) 8, 3; related 2, 19; repeatedly 2, 17; in (with) respect to 5, 19; 8, 3; 12, 12Б; resulting 2, 19; reveal 5, 17; 6, 15А, Б; scale 4, 18; set с последователями 12, 5; set in motion 6, 3; 7, 20; 12, 5; since 4, 8; similar (simple, single) 2, 32; so и словосочетания с ним 4, 20; 7, 17; 8, 1, 2; 12, 12, 13; solar (sun) 11, 19; something (somewhat) 10, 11; sort 1, 25; specify и его производные 4, 15; speculate и его производные 11, 18; in spite of 8, 7; stellar (star) 11, 19; still 9, 7; store 7, 21; 11, 22А; straight 6, 13; subject и словосочетания с ним 7, 15; succeed 3, 15; successful 2, 32; succession (successive) 2, 30, 32; 4, 21; suffer 4, 16; suggest 1, 17; superior 12, 8; sure и словосочетания с ним 9, 11; 11, 1; 22А, Б; take into account (take account) 2, 26; 6, 4, 6; 7, 20; 10, 16; take advantage 2, 26; 6, 4, 6; 11, 22Б; take care 2, 26; 6, 4, 6; 7, 20; 11, 22Б; take into consideration 2, 26; 6, 4; take part 2, 26; 6, 4; take place 2, 26; 6, 4, 14Б; technique 4, 18; tend 4, 14; in terms of 1, 18; 5, 24Б; 8, 16; terrestrial 11, 19; thanks to 8, 4; then 9, 8; thereafter (thereby, therefrom, therein) 10, 12; these (заменитель существительного) 5, 9; throughout 5, 22; time и словосочетания с ним 8, 8; together with 8, 6; trace и его производные 8, 15; tremendous 5, 24А; in turn 8, 9; ultimately 10, 8; 12, 12А; upper (uppermost) 5, 20; use is made 6, 6; 11, 22Б; valid и его производные 12, 6; variables 2, 25; view и его производные 2, 24; 4, 21; 5, 24Б; 8, 4; 12, 12Б; virtually 12, 12А; by (in) virtue of 7, 14; 8, 4; whether 1, 13; whereby 11, 13; while 9, 14; on the whole (as a whole) 8, 9; 12, 12, 13; which (in which year) 10, 5; with 2, 7; 4, 9Б; 9, 15; yet 9, 7; yield 5, 15; 6, 51А.

СОДЕРЖАНИЕ

	<i>Стр.</i>
От авторов	3
О некоторых особенностях языка научно-технической литературы и методики обучения переводу	7
Урок первый	
Текст: The Modern Theory of Light	24
Упражнения	26
Дополнительные тексты:	
1. Who was the First to Measure the Speed of Light?	43
2. Guidance	44
3. Life on the Other Planets	45
Контрольные вопросы	46
Грамматические основы перевода. Перевод инфинитивных конструкций: инфинитив как часть сказемого (§ 8—14), инфинитив как часть сложного дополнения (§ 15, 16), инфинитивная конструкция с for (§ 18). Инфинитив в функции подлежащего (§ 2), определения (§ 6), обстоятельства цели (§ 3), обстоятельства последующего действия (§ 5), обстоятельства следствия (§ 4). Местоимение it в функции формального дополнения (упр. 11). Перевод союзных слов that, what, how, where (упр. 12). Перевод предложений с союзом whether (упр. 13). Различные значения служебных слов for (упр. 14) и both (упр. 15).	
Лексические основы перевода. Зависимость перевода глагола от слов, с ним связанных (§ 13). Перевод слов: gain, fail, suggest, assume, exceed, adequate, conventional, common, ordinary, hardly, nearly, readily, necessarily, evidence, kind, sort. Перевод словосочетаний: in terms of, give rise, at least. Перевод прилагательных с суффиксом -able (упр. 26). Перевод слов с префиксами dis-, in- (im-, ir-, il-) и un- (упр. 27). Перевод терминов типа «существительное+существительное», «прилагательное+существительное» (упр. 28).	
Урок второй	
Текст: The Fundamental Problems of Television	47
Упражнения	49
Дополнительные тексты:	
1. Atmosphere	71
2. Einstein's Photoelectric Law	72
3. Principles of Fusion	73
4. The Calculus	—
5. Computers and Astrophysics	74
Контрольные вопросы	75
Грамматические основы перевода. Перевод причастных конструкций: определительные причастные обороты (§ 21, 24), обстоятельственные причастные обороты с союзами (§ 22), обособленный причастный оборот, обособленный причастный оборот с	

предлогом with (§ 23), конструкция «причастие + инфинитив» типа expected to reach (§ 25). Перевод служебных слов: following, assuming, given, depending (упр. 13). Различные значения служебного слова as (упр. 14).

Лексические основы перевода. Зависимость перевода глагола-сказуемого от лексического значения подлежащего (§ 114). Перевод наречий, относящихся к глаголу и прилагательному (§ 118, 119). Перевод слов: resulting, related, associated, like, involve, fundamentals, variables, essentials, provide, succession, locate. Перевод словосочетаний: by now, by then, словосочетаний «глагол to be + существительное с предлогом», словосочетаний с глаголом to take и словосочетаний со словами view и point. Перевод союзов provided, provided that, providing. Перевод слов с префиксами sub-, super-, ultra-. (упр. 33). Перевод терминов типа «причастие I + существительное», «причастие II + существительное» (упр. 34).

Урок третий

Текст: The Rocket Weapon	77
Упражнения	79
Дополнительные тексты:	
1. Measuring Star Distances	92
2. Bode's Law	93
3. Chemistry and the Atomic Theory	94
4. Cybernetics Applied to Space	95
Контрольные вопросы	

Грамматические основы перевода. Перевод герундия и герундиальных оборотов (§ 26—33). Различные значения служебных слов after и before (упр. 10).

Лексические основы перевода. Перевод глагола-сказуемого с использованием языковой догадки (§ 113). Перевод слов: succeed, expand, project, facility, lack, prevent. Перевод словосочетаний to be aware of (smth.) и словосочетаний со словами all, long, due. Перевод конструкций типа as high as. Перевод слов с префиксами anti- и counter- (упр. 24). Перевод терминов типа «наречие + причастие (или прилагательное) + существительное» (упр. 25).

Урок четвертый

Текст: Some Ramjet Propulsion Aspects	97
Упражнения	99
Дополнительные тексты:	
1. Noise. The Theoretical Limit to Measurement	114
2. Functional Parts of a Guided Weapon System	115
3. Space Power Systems	118
Контрольные вопросы	

Грамматические основы перевода. Группа существительного (§ 82—90). Приложение (§ 91, 92). Различные значения служебного слова since (упр. 8).

Лексические основы перевода. Зависимость перевода прилагательного от лексического значения существительного, к которому оно относится (§ 112). Зависимость перевода существительного от лексического значения правого определения (§ 111). Наречия с усилительным значением (§ 120). Перевод слов: inherent, tend, specify, enter, promise, appreciate, propel, leave, suffer, lead, available, item, impact, technique, scale, current, present. Перевод словосочетаний со словом so. Перевод терминов типа «существительное + предлог + существительное» (упр. 22) и «существительное + прилагательное (free или tight)» (упр. 23).

Урок пятый

Текст: The Colour Spectrum	120
Упражнения	122
Дополнительные тексты:	
1. Application of Electric-Propulsion System	137
2. Ion Propulsion	—
3. Our Galaxy	138
4. The Speed of Computers	139
Контрольные вопросы	140

Грамматические основы перевода. Сослагательное на-
клонение (§ 34—39). Бессоюзное условное предложение (§ 40). Раз-
личные случаи употребления глаголов *should* и *would* (§ 41, 42). *These*—
как заменитель существительного (упр. 9). Различные значения служеб-
ных слов *because* и *because of* (упр. 10).

Лексические основы перевода. Перевод существитель-
ного с использованием языковой догадки (§ 111). Перевод слов: *yield*,
identify, *occur*, *estimate*, *reveal*, *background*, *inner*, *outer*, *upreg*, *outermost*,
uppermost, *innermost*, *draw*, *throughout*. Перевод словосочетаний: *to be*
familiar, *in(with) respect to*, со словами *matter* и *but* и типа *is characteristic of* (упр. 13). Перевод слов с префиксами *over-* и *under-* (упр. 25).
Перевод терминов типа «*self-+причастие* (I или II)» и терминов, перв-
ым компонентом которых является слово *direct* (упр. 26, 27).

Урок шестой

Текст: Radar	142
Упражнения	144
Дополнительные тексты:	
1. The Motion of a Rigid Body	158
2. Sonar and the Fourth Dimension	159
3. Our Cosmonauts	160
4. The Doppler Effect	161
Контрольные вопросы	162

Грамматические основы перевода. Перевод несвобод-
ных словосочетаний с глаголом (§ 44—55). Обороты типа *it follows*
(§ 54). Различные значения местоимения *it* (упр. 10).

Лексические основы перевода. Перевод слов *sit*, *medi-
um*, *straight*. Перевод словосочетаний *to be referred to* и *as follows*.
Перевод слов с префиксом *ge-* (упр. 16). Перевод терминов, первым
компонентом которых являются слова *long* (упр. 17) и *high* (упр. 18).

Урок седьмой

Текст: Computers	163
Упражнения	165
Дополнительные тексты:	
1. Cryogenic Propellants	177
2. Neutron Physics	179
3. What is Holography	180
4. Transistors — Versus Vacuum Tubes	182
Контрольные вопросы	—

Грамматические основы перевода. Перевод предложе-
ний с инверсией (§ 93—97).

Лексические основы перевода. Перевод слов: *feed*,
extend, *neither*, *nor*, *add*, *once*, *art*, *subject*. Перевод словосочетаний:
along with, *by virtue of*. Перевод оборотов: *this is the case* и *as far as*
(*smith*) *is concerned*. Перевод слов с префиксами *pre-* и *post-* (упр. 21).
Перевод терминов типа «сложное прилагательное с суффиксом *-ed+су-*»

ществительное» (упр. 22) и терминов, вторым компонентом которых является слово *proof* (упр. 23).

Урок восьмой

Текст: Semiconductors	184
Упражнения	186
Дополнительные тексты:	
1. Interplanetary Travel by Solar Sail	202
2. Electron Microscope in Metallurgy	203
3. Basic Design Consideration of a Nuclear Rocket	—
Контрольные вопросы	204

Грамматические основы перевода. Перевод несвободных словосочетаний с существительным и другим частям речи (§ 56—66). Перевод выделительной конструкции типа *It was not until... that* (§ 99). Выделение сказуемого с помощью глагола *to do* (§ 98).

Лексические основы перевода. Зависимость перевода глагола-сказуемого от лексического значения подлежащего (упр. 13). Перевод слов: *account for, rule, trace, average*. Перевод слов с префиксами *semi-, trans-* и *non-* (упр. 17). Перевод терминов типа «существительное+причастие I (или герундий)+существительное», «существительное+причастие II+существительное» (упр. 18).

Урок девятый

Текст: Nuclear Power for Aircraft	206
Упражнения	208
Дополнительные тексты:	
1. Subject Matter of Fluid Mechanics	217
2. Feedback Control Systems	218
3. Reactors for Nuclear-Powered Gas Turbines	219
Контрольные вопросы	220

Грамматические основы перевода. Слова и словосочетания, служащие для связи частей высказывания (§68—74).

Лексические основы перевода. Перевод слов: *sure, assembly, former, latter*. Перевод союза *while*. Перевод предлога *with*. Перевод многозначных служебных слов: *also, again, otherwise, rather, yet, still, then* (упр. 5—8). Перевод слов с различными суффиксами и префиксами (упр. 17). Перевод наречий с суффиксом *wise* (упр. 18). Перевод терминов типа «существительное+причастие II», соединенных дефисом (упр. 19).

Урок десятый

Текст: Cosmic Rays	222
Упражнения	224
Дополнительные тексты:	
1. Exploring Our Sun	234
2. Digital Computers	235
3. The Solar System	—
Контрольные вопросы	238

Грамматические основы перевода. Перевод эллиптических конструкций (§ 100—104). Перевод сочетаний слов, выполняющих функцию союза типа *in which year* (упр. 5).

Лексические основы перевода. Перевод слов: *encounter, impart, eliminate, finally, ultimately, eventually, recognize, arrive, effect, affect, somewhat, something, thereafter, therefrom, therein, thereby, apparent, occasion*. Перевод предлога *by*. Перевод слов с префиксами *de-* и *fore-* (упр. 17). Перевод сложных терминов типа *combustion chamber surface area* (упр. 18).

Урок одиннадцатый

Текст: The Nature and Origin of the Primary Cosmic Radiation	239
Упражнения	241
Дополнительные тексты:	
1. Solar Radiation	252
2. Velocities Near That of Light	253
3. Reliability of Missiles and Space Vehicles	254
4. Noble Gas Ion Lasers	255

Контрольные вопросы	256
-------------------------------	-----

Грамматические основы перевода. Слова, словосочетания и обороты, служащие для выражения отношения автора к высказываемым мыслям и для ее уточнения (§ 75—81). Перевод конструкции с двойным управлением (§ 105—107).

Лексические основы перевода. Перевод слов: borne, whereby, arise, rise, raise, capture, trap, initiate, originate, agree, speculate. Перевод глагола to depend с двумя предложными дополнениями. Перевод предлога over. Перевод многозначного служебного слова just и словосочетаний с ним (упр. 10). Перевод слов с префиксами inter-, mal-, mis- (упр. 23).

Урок двенадцатый

Текст: The Progress of Contemporary Physics	257
Упражнения	259

Дополнительные тексты:	
1. Experimental Results with a Collinear Electrode Plasma Accelerator and a Comparison with Ion Accelerators	267
2. Application of Digital Computers for Automatic Translation of Languages	270
3. Plasma Microwave Devices	271
4. Energy Balance and Material Problems	272
5. Doppler Techniques for Miss-Distance Indicating Systems	273
6. A First Look at Random Noise	275

Контрольные вопросы	276
-------------------------------	-----

Грамматические основы перевода. Перевод конструкций «have+существительное+инфinitив» (§ 109) и «have+существительное+причастие II» (§ 108).

Лексические основы перевода. Перевод слов: set (с послелогами), valid, escape, superior, inferior, number, numerable, numerous, numerical, effort, endeavour. Перевод предлога against. Перевод многозначного служебного слова ever (упр. 3). Перевод глаголов с префиксом out- (упр. 13). Перевод терминов, в состав которых входят прилагательные high и long (упр. 14).

Упражнения по отдельным вопросам перевода	277
---	-----

Поурочные разработки слов	285
-------------------------------------	-----

Справочник	352
----------------------	-----

Приложения:

1. Наиболее употребительные слова и сокращения, заимствованные из латинского языка	400
2. Чтение наиболее употребительных математических обозначений	—
3. Наиболее употребительные сокращения, принятые в англо-американской технической литературе	401
Англо-русский словарь	403
Содержание справочника с указанием упражнений	438
Список некоторых лексических единиц и упражнений для их закрепления	442